
Creating an LLM to Generate SQL Queries for GridDB

November 13, 2024
Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 2/12

Table Of Contents

Introduction 3

Existing Model Evaluation 3

Dataset Selection 4

Dataset Filtering 4

Dataset Creation 5

Fine Tuning 7

Evaluation 8

Application Implementation 9

Conclusion 11

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 3/12

Introduction

GridDB is a time series database available both on-premise and on the cloud optimized for
IoT and Big Data that was developed by Toshiba Digital Solutions Corporation. It features a
unique key-container model designed specifically to handle both metadata and time series
data. Its in-memory architecture allows incredible ingestion and query performance.
GridDB is also horizontally scalable to improve both performance and reliability.

With the rise in popularity of using Large Language Models (LLMs), general purpose
models like GPT-4 have attracted the most interest and media coverage, but many other
specialized models exist for the purpose of code generation. While many of these models
are extremely large and require immense compute power to train and execute, some LLMs
can be trained and executed on platforms that are practical and cost effective.

Every database uses a slightly different form of SQL and GridDB is no different. In
particular, GridDB has different time functions compared to other SQL databases and also
uses a unique Key-Container data model where it is encouraged to store homogeneous data
in multiple tables. With these differences in mind, the LLMmust be fine-tuned for GridDB
and experience tells us that an off the shelf LLM would not produce suitable queries.

There are both consumer and business use cases for using an LLM to query GridDB. For
consumers, the LLM would enable the end user to ask simple questions about their own
data such as “When do I consume the most electricity?”. For business analysts and
managers, it extends their business intelligence tools allowing for more ad-hoc queries to
dive deeper into their organization’s data.

In this technical report, we demonstrate how software developers can utilize an LLM to
generate queries for use with GridDB’s SQL interface to enhance their application. The
process used to create and use an LLM for GridDB is as follows:

1. Determine SQL Generation performance of other models and the feasibility of fine
tuning these other models.

2. Find the datasets that were used to train the models selected in Step 1.
3. Filter out any queries that are not supported by GridDB and fine-tune the model to

ensure accuracy is still reasonable.
4. Create a data set that uses GridDB specific features: time series range selection and

Key-Container.
5. Fine-tune the model with our new GridDB specific dataset and evaluate the accuracy

as measured by the percentage of the number of responses that matched the human
answer in the evaluation data split.

6. Demonstrate inference within a Python Flask application.

Existing Model Evaluation

Closed source, general purpose models such as GPT-4 were immediately dismissed as the
bulk of SQL related material they consumed for training would have been for mainstream

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 4/12

databases such as Oracle, Postgres, and SQLite. Not only that, but their closed source nature
would make it difficult to train or fine-tune the models for GridDB.

DeFog.AI’s SQLCoder model based on LLAMA was tested and performed well, but the
original models did not support GridDB’s time series SQL semantics. Furthermore, the
hardware and time requirements to fine-tune or run inference with SQLCoder was not
feasible. Likewise, StarCoder was examined and its reported accuracy was deemed to be
significantly poorer than SQLCoder while being just as difficult to fine-tune.

The last two models left for consideration were OpenAI’s GPT-2 and Google’s T5-Small
models. After fine tuning both with our selected datasets, T5-Small was generally more
accurate and trouble-free while performing fine tuning. Other parties had already used
GPT-2 and T5-Small to create SQL generating LLMs and between the two, accuracy was
better with T5-Small.

Dataset Selection

Three individual datasets with similar characteristics that had been used to train text to
SQL models were found:

• https://huggingface.co/datasets/b-mc2/sql-create-context
• https://huggingface.co/datasets/Clinton/Text-to-sql-v1
• https://huggingface.co/datasets/knowrohit07/know_sql

Between the three datasets, they have nearly 400,000 rows of data. Each row contains:

• A context or the SQL schema
• The question to be converted into a SQL query.
• The answer, the SQL query based on the question and context.

For example:

{
“answer” : “SELECT COUNT(*) FROM head WHERE age > 56”,
“question” : “How many heads of the departments are older than 56 ?”
“context” : “CREATE TABLE head (age INTEGER)”

}

Dataset Filtering

The first problem seen in these third party datasets is that some of the queries do not work
with GridDB. A simple script was created to execute the context statement and then the
query statement for each row in the dataset, if the query was executed successfully, then it
would be saved to the filtered dataset.

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 5/12

for line in fd.readlines():
data = json.loads(line)
data[answer_name] = re.sub('"', '\'', data[answer_name])
try:

for stmt in data[context_name].split(";"):
stmt = stmt.strip()
table = stmt.split(" ")[2]
curs.execute("DROP TABLE IF EXISTS "+table)
curs.execute(stmt)

except:
pass

try:
curs.execute(data[answer_name])
good=good+1
print(json.dumps({"question": data[question_name], "context":

data[context_name], "answer": data[answer_name]}))

except:
bad=bad+1

Of the nearly 400,000 queries in the original datasets, 170,000 of them functioned in
GridDB and were used to perform initial model fine tuning. The dataset was split 80/10/10
for training, validation, and testing and fine tuning ran on top of the base T5-small model.

Dataset Creation

None of the data in the filtered dataset supports GridDB specific functionality. While
GridDB has many unique SQL features not shared with any other database, we wanted to
focus on the two most basic.

The first is GridDB’s Key-Container data model. Most relational databases store all data in
one table, while GridDB recommends splitting data into multiple tables. For example, data
for device #1 would be stored in tsdata_1 and data for device #20 in tsdata_20 so the
human question of “What is the maximum temperature recorded on device 12?” would be
the SQL query of SELECT max(temp) FROM tsdata_12 instead of SELECT max(temp) FROM
tsdata WHERE device = ‘12’” as would be normal in another database.

The second feature we wanted to support was fetching data, in particular aggregations for a
given period. GridDB uses the TIMESTAMP() SQL function to compare time series data in a
query. For example, to select average temperature in 2024, you would use the query SELECT
avg(temp) from tsdata_12 where ts >= TIMESTAMP(‘2024-01-01’) and ts <
TIMESTAMP(‘2025-01-01’).

To do this, a new tool was developed that could generate a human question with
corresponding SQL query answer based on a given template. Iterating on the template with

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 6/12

random values for the time period, container identifier, aggregation, etc would build a
reasonable sized data set to fine tune the model with.

An example input template:

{
"context" : "CREATE TABLE IF NOT EXISTS devices (device_id INTEGER, ts

TIMESTAMP, co DOUBLE, humidity DOUBLE,light BOOL,lpg DOUBLE,motion
BOOL,smoke DOUBLE,temp DOUBLE);",

"queries" : [
{

"columns" : ["co", "humidity", "lpg", "smoke", "temp"],
"human" : "What is the {HUMAN_AGGREGATE} {COLUMN} ?",
"sql" : "SELECT {AGGREGATE}({COLUMN}) FROM devices;"

}
]

}

Would produce :

{"context": "CREATE TABLE IF NOT EXISTS devices (device_id INTEGER, ts
TIMESTAMP, co DOUBLE, humidity DOUBLE,light BOOL,lpg DOUBLE,motion
BOOL,smoke DOUBLE,temp DOUBLE);",
"question": "What is the lowest smoke in 2009 for all devices?",
"answer": "SELECT MIN(smoke) FROM devices WHERE ts >
TIMESTAMP('2009-01-01T00:00:00Z') and ts <
TIMESTAMP('2010-01-01T00:00:00Z');"}
{"context": "CREATE TABLE IF NOT EXISTS devices (device_id INTEGER, ts
TIMESTAMP, co DOUBLE, humidity DOUBLE,light BOOL,lpg DOUBLE,motion
BOOL,smoke DOUBLE,temp DOUBLE);",
"question": "What is the highest humidity in June 2011 for all devices?",
"answer": "SELECT MAX(humidity) FROM devices WHERE ts >
TIMESTAMP('2011-06-01T00:00:00Z') and ts <
TIMESTAMP('2011-07-01T00:00:00Z');"}

We created five to six templated queries that both did and did not use the TIMESTAMP()
function for five different contexts which both did and did not use multiple tables per the
Key-Container model and then with the dataset creation tool, generated 100 different
question/answer pairs per query for a total of 3600 queries. As automatic dataset splitting
resulted in a disproportionate amount of one context over another in the test dataset, a
second test dataset was generated with only a single question/answer pair for each
templated query.

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 7/12

Fine Tuning

For both the filtered data set and the generated GridDB data set, each training data item
combined into a single string of the format:

Tables:
{context}

Question:
{question}
Answer:

The above string is then tokenized using the HuggingFace AutoTokenizer and used as the
input identifier while the answer is tokenized as the labels. After the dataset has been
tokenized, it is trained using HuggingFace’s Trainer library.

Additional tokens for < and <= need to be added to the tokenizer otherwise those symbols
with the SQL statements would be ignored by the model during training.

def tokenize_function(example):

start_prompt = "Tables:\n"
middle_prompt = "\n\nQuestion:\n"
end_prompt = "\n\nAnswer:\n"

data_zip = zip(example['context'], example['question'])
prompt = [start_prompt + context + middle_prompt + question +

end_prompt for context, question in data_zip]
example['input_ids'] = tokenizer(prompt, padding='max_length',

truncation=True, return_tensors="pt").input_ids
example['labels'] = tokenizer(example['answer'], padding='max_length',

truncation=True, return_tensors="pt").input_ids

return example

finetuned_model = AutoModelForSeq2SeqLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(tok_model_name)
tokenizer.add_tokens(['<=', '<= ', ' <=', ' <', '<', '< ', '>= ', ' >=',
'>='])
finetuned_model.resize_token_embeddings(len(tokenizer))

tokenized_datasets = dataset.map(tokenize_function, batched=True)

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 8/12

output_dir = f'./sql-training-{str(int(time.time()))}'

training_args = TrainingArguments(
output_dir=output_dir,
learning_rate=5e-3,
num_train_epochs=2,
per_device_train_batch_size=8, # batch size per device during

training
per_device_eval_batch_size=8, # batch size for evaluation
weight_decay=0.01,
logging_steps=50,
evaluation_strategy='steps', # evaluation strategy to adopt

during training
eval_steps=500, # number of steps between

evaluation
)

trainer = Trainer(
model=finetuned_model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['validation'],

)

trainer.train()

Using an AMD Ryzen Threadripper 2990WX with an NVIDIA 4070GTX, training took
approximately 3-4 hours to complete for the filtered dataset and under an hour to complete
for the generated dataset.

Evaluation

Using either the 10% test split of the training dataset or the generated test dataset, the
same tokenization method was used to build input for the model. The output answer was
generated for every input and compared using HuggingFace’s ROUGE evaluation library.

try:
for stmt in data[context_name].split(";"):

stmt = stmt.strip()
table = stmt.split(" ")[2]
curs.execute("DROP TABLE IF EXISTS "+table)
curs.execute(stmt)

except:

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 9/12

pass

try:
curs.execute(data[answer_name])
good=good+1
print(json.dumps({"question": data[question_name], "context":

data[context_name], "answer": data[answer_name]}))

except:
bad=bad+1

This evaluation was performed for both the original filtered data set and also the generated
GridDB specific data set and ROUGE metrics were gathered. ROUGE or Recall-Oriented
Understudy for Gisting Evaluation is a set of metrics used to evaluate text transformation or
summarization models by comparing human generated baseline answer versus the model
generated response. Each ROUGE metric varies from 0 to 1, with 1 being a perfect match.

Metric Filtered Queries GridDB Specific Queries

ROUGE-1 0.9220341258369449 0.893189189189189

ROUGE-2 0.8328271928176021 0.8556992481203007

ROUGE-L 0.9039756047111251 0.8807387387387388

• ROUGE-1 measures the overlap of the words between the original and infered
answer.

• ROUGE-2 refers to the overlap of pairs of words between the reference and infered
answer.

• ROUGE-L measures the longest sequence of words between the reference and
infered answer that match.

Application Implementation

There are many ways to integrate the LLM into an application. LLM inference could be
performed on the edge on the user’s device which would allow for greater scalability but
also much higher end user system requirements.

If the inference is performed on the server side, it can be bundled into the current
application or as a separate service that communicates with the current application. This

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 10/12

would allow inference to run on dedicated high performance instances and thus inference
would have minimal impact on the existing application’s performance.

We will directly bundle the LLM into our application into the demo for simplicity’s sake.

Now adding the code to use the model in your application is straight forward. The context
can be fetched using GridDB’s NoSQL API:

containers = []
x = 0
while x < gridstore.partition_info.partition_count:

containers.extend(gridstore.partition_info.get_container_names(x, 0))
x=x+1

conts_and_schemas = {}
for cont in containers:

col_list = gridstore.get_container_info(cont).column_info_list
schema = {}
for row in col_list:

schema[row[0]] = type_mapping(row[1])
conts_and_schemas[cont] = schema

create_stmts = []
for key in conts_and_schemas:

create_stmts.append(create_table_statement(key,
conts_and_schemas[key]))
return create_stmts

Inference for a single question is performed in a similiar fashion to how evalution was
performed.

model = AutoModelForSeq2SeqLM.from_pretrained("griddb_model_2_epoch")
tokenizer = AutoTokenizer.from_pretrained("t5-small")
def translate_to_sql_select(context, question):

prompt = f"""Tables:

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 11/12

{context}
Question:
{question}
Answer:
"""

input_ids = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(input_ids)
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
return sql_query

Finally a Flask route gets the local context, calls the model, executes the query, and
returns the response.

@app.route('/nlquery')
def nlquery():

question = request.args.get('question')
context = get_local_context()
query = translate_to_sql_select(context,question)
curs = conn.cursor()
try:

curs.execute(query)
rows = curs.fetchall()
return json.dumps(rows)

else:
abort(400, 'Generated query was not successful')

While the model is easily incorporated into any Flask or other Python application as shown,
scalability may be difficult as each LLM invocation takes approximately 500 milliseconds
using an AMD Ryzen Threadripper and NVIDIA 4070GTX. There are other projects such as
https://github.com/Ki6an/fastT5 that will greatly improve the scalability of the GridDB
LLMmodel.

Conclusion

We hope the process of creating a training dataset, performing the training and using the
resulting LLM within an application to query your data was insightful and educational.

Using LLM, end users including IoT device owners, corporate analysts, managers, customer
service, and others are able to query data stored in GridDB without having to know SQL.
While the queries used to demonstrate the LLM in this project are relatively simple, the
model appears to be extensible to other query types and methods. Furthermore, the
T5-small model is efficient to train, not requiring large investments in hardware to to train
or run inference on.

In the future, with a larger, more diverse training dataset and advancements even in the
base model performing natural language queries will become even more commonplace and
accurate. The source code used in the project is available at

November 13, 2024 Version 1.0



Creating an LLM to Generate SQL Queries for GridDB 12/12

https://github.com/griddbnet/sql_llm_model. The finished model can be downloaded from
HuggingFace https://huggingface.co/griddbnet.

November 13, 2024 Version 1.0


