
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

GridDB Case Study:

DENSO Drive Metrics System

May	8,	2018	
Revision	0.10	

1

Introduction
How	safe	do	you	drive?	It’s	a	relatively	hard	question	to	answer	since	we	don’t	have	any	measurable	and	
relevant	criteria	to	judge	each	driver’s	safety	level.	If	we	scored	each	driver’s	driving	behavior,	that	would	
be	quite	useful	for	almost	all	stake	holders	in	this	motorized	world	and	would	make	the	world	safer	place.	
	
A	leading	supplier	of	advanced	automotive	technology,	systems	and	components	for	major	automakers,	
DENSO	International	America,	invented	a	technology	to	quantitatively	evaluate	a	driver’s	safety	level	based	
on	machine	learning	methods.	Using	this	technology,	they	are	building	a	cloud	base	solution	called	the	
Drive	Metrics	System	(DMS)	that	allows	fleet,	rental,	insurance	organizations,	and	individual	car	owners	to	
monitor	driving	behavior.	
	
As	of	March	15,	2018,	the	beta	version	system	of	DMS	has	been	completed	which	is	described	in	detail	in	
this	case	study.			

Challenge
With	the	DMS	software	installed	in	the	vehicle,	there	needed	to	be	a	method	to	stream	the	driving	data,	
such	as	velocity,	acceleration,	location,	and	current	user	input	to	the	cloud	for	real	time	streaming,	archival,	
and	offline	analysis.	On	the	cloud	side,	the	receiving	data	must	be	written	to	the	database	without	data	loss	
while	concurrently	be	visualized	in	a	web	application	in	near	real-time.	The	whole	system	would	need	to	be	
cost	effective	during	initial	field	trials	and	also	be	able	support	hundreds	of	thousands	of	vehicles	storing	
millions	of	hours	of	driving	behavior	data	while	maintaining	99.9%	uptime.		
	

	
Figure	1.	Overview	of	DMS	

Web ApplicationIngestion Service

2

Solution
Figure	1	shows	the	overview	of	this	system.	Adding	cellular	communications	allows	the	vehicle	to	stream	
driving	behavior	data	to	DENSO’s	cloud	infrastructure	where	it	is	processed	by	an	open-source	messaging	
framework	before	being	stored	in	a	3-node	GridDB	cluster	that	could	be	scaled	out	as	required.		The	raw	
input	data	such	as	vehicle	speed	as	well	as	the	DMS	results	can	be	then	visualized	in	both	in	near	real-time	
or	past	trips	can	be	replayed	using	a	web	browser.		

Results
	
Figure	2.	shows	the	result	of	performance	evaluation	of	this	system.	We	measured	the	average	response	
time	between	messages	from	the	web	server.	The	web	server	tries	to	send	a	message	every	100	msec	once	
a	browser	accesses	to	this	web	server	and	request	to	show	a	trip	stored	in	GridDB.	So,	in	the	ideal	situation,	
it	should	be	100	msec.	The	left	figure	shows	the	average	response	time	depends	on	the	number	of	browser	
connections.	In	this	evaluation,	the	backend	server	is	receiving	a	data	from	fixed	1000	vehicles.	The	right	
figure	shows	the	average	response	time	depends	on	the	number	of	vehicle	connections.	In	this	evaluation,	
the	frontend	server	is	sending	messages	to	fixed	80	browsers.	As	you	can	see,	the	number	of	browser	
connections	exceeds	80,	the	average	response	time	is	exponentially	increased.		It	is	safe	to	say	that	this	
system	can	handle	around	70	browser	accesses	at	the	same	time.	The	vehicle	side	is	more	robust.	When	we	
connect	1000	vehicles,	the	delay	of	each	message	is	still	acceptable	level.	We	cannot	conduct	the	larger	
number	of	vehicle	connection	test	because	of	the	lack	of	performance	of	a	workload	generator	computer.	
In	this	evaluation,	we	used	Microsoft	Azure	instances	with	following	specifications:	
	

• Web	Application	Server:	Standard	B1ms	(1	vcpu,	2	GB	memory)	
• Data	Ingestion	Server:	Standard	B2s	(2	vcpus,	4	GB	memory)	
• Database	Servers:	Standard	B1ms	(1	vcpu,	2	GB	memory)	x	3	

	
This	is	a	minimum	configuration	using	small	instance	sizes.	Nevertheless,	this	system	is	able	to	maintain	
high	frequency	real-time	data	streams	for	over	1000	vehicles	and	70	browser	sessions.	GridDB’s	high	
performance	provided	by	a	hybrid	in-memory	architecture	allowed	the	ingestion	software	to	support	a	
vehicle	for	just	pennies	each	while	it’s	Key-Container	architecture	provided	efficient	queries	making	the	
visualization	software	easy	to	develop.	The	evaluation	result	also	showed	that	as	the	number	of	vehicles	
generating	data	increases,	the	system	architecture	that	will	easily	scale	out	without	major	modification	
providing	while	also	providing	economy	of	scale	that	will	reduce	per-vehicle	costs.		

	
	
	
	
	
	

3

	 	
	

Figure	2.	DMS	performance	result	

Future Development
As	shown	in	in	Figure	1,	the	web	application	server	and	ingestion	server	are	so-called	single	points	of	
failure	(SPOF),	to	correct	the	SPOFs,	Azure’s	load	balancer	and	multiple	instances	of	each	application	will	
be	deployed.	According	to	Microsoft	Azure	Service	Level	Agreement	(https://azure.microsoft.com/en-
us/support/legal/sla/virtual-machines/v1_0/)	,	if	two	same	instances	are	deployed	in	one	“Availability	
Set”,	99.95%	uptime	for	the	system	is	guaranteed.	

	
On	the	other	hand,	multiple	GridDB	database	servers	have	already	deployed	in	one	availability	group	with	
GridDB’s	Autonomous	Data	Distribution	Algorithm	(ADDA)	balancing	containers	and	providing	replication	
allowing	the	database	backend	to	not	only	be	reliable,	but	also	scalable.	
	
After	the	completion	of	performance	testing,	GridDB	was	upgraded	from	Community	Edition(CE)	to	
Standard	Edition(SE).	Table	1	show	the	differences	between	CE	and	SE.	From	the	management	point	of	
view,	the	big	difference	between	CE	and	SE	is	Online	Backup	and	Online	Expansion.	For	most	databases,	
adding	more	nodes	can	only	be	done	when	the	database	is	offline.	GridDB	Standard	Edition	offers	the	
ability	for	users	to	expand	their	database	online	without	having	to	stop	operation	and	halt	services.	When	
adding	new	nodes	to	a	cluster	in	Community	Edition,	all	the	nodes	in	the	cluster	must	leave	the	cluster	and	
then	be	restarted.	This	can	be	tedious	and	costly	for	a	large	database	with	many	nodes.	In	Standard	Edition,	
this	step	can	be	skipped	altogether.	
	
Another	future	enhancement	is	to	improve	both	the	accuracy	and	processing	speed	of	the	data	analysis.	
DMS	provides	several	different	analysis	tools	that	consist	of	complicated	data	search	queries	and	are	
computationally	intensive.		As	every	data	point	in	DMS	has	both	time	and	geospatial	information,	GridDB	

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

Re
sp

on
se

 T
im

e
[m

se
c]

Number of Connected Browsers

Browser Connection Benchmark
(Number of Vehicles = 1000)

0

50

100

150

200

250

300

350

400

0 50 100 200 500 1000

Re
sp

on
se

 T
im

e
[m

se
c]

Number of Connected Vehicles

Vehicle Connection Benchmark
(Number of Browsers = 80)

4

SE’s	geospatial	optimized	queries	using	POINTS,	LINESTRINGs,	and	POLYGON	data	types,	the	development	
of	advanced	analysis	tools	with	greater	accuracy	and	lower	processing	times	will	be	eased.	
	
	

 CE SE
SOFTWARE SUPPORT
 Maintenance Releases n y
 Bug fixes/Patches n y
 Updates n y
BASIC
 Distributed Data Management y y
 Transaction Management y y
DATA TYPE SUPPORT
 Key-value data y y
 Time-series data y y
 Geometry data n y
QUERY LANGUAGE
 SQL Subset (TQL) y y
SCALABILITY
 Offline expansion y y
 Online expansion n y
PERSISTENCY
 In-Memory and Disk y y
 API
 Java y y
 C y y
ADMINISTRATIVE TOOLS
 Offline backup n y
 Online backup n y
 Export/import n y
 Differential backup function n y
 Management GUI n y
 Status Acquisition n y

	
Table	1.	Differences	between	GridDB	CE	and	SE	

