
GridDB
Data Model Comparison
Version 1.1

February 5, 2024
Fixstars Solutions, Inc.

1 / 21

Table of Contents
Table of Contents 1
Executive Summary 2
Overview 2

Data Models 2
Data Sample 3

MultiWide 3
SingleWide 3
MultiNarrow 4
SingleNarrow 4

GridDB 5
Execution Environment 5
Benchmark Configuration 5

Ingest/Load Performance 6
Data Storage Size 7

Query Performance 9
Last Location 9
Low Fuel 9
Average Load 10
Max Daily Velocity 11
Average Daily Fuel Consumption 11
Time Bucketing vs. Group By Range 12
Partitioning 13

Other Considerations 15
Conclusion 18
Appendixes 19

Load/Query Performance Raw Data 19
Group By Range Comparison Raw Data 19
Partitioning Comparison Raw Data 20
Implementation Length Raw Data 20

GridDB Data Model Comparison

2 / 21

Executive Summary
In this comparison paper, four different data models were examined with GridDB to determine
their relative weaknesses and strengths in ingest and query performance, storage
requirements, along with other factors such as ease of development and flexibility.

Overview
To compare the four different data models, TSBS’s (https://github.com/timescale/tsbs) IoT
data set was used which mimics time series data generated by a fleet of trucks. The data
includes not only plain sensor data such as location and velocity but also diagnostic data such
as fuel level status and further meta data such as driver name, fleet name, and truck type.

Data Models

The four data models selected for comparison were:

MultiWide
● One table per truck where the data values were stored in individual columns.

SingleWide
● One table for all trucks where the data values were stored in individual columns.

MultiNarrow
● One table per truck where the data values were stored as key-value pairs.

SingleNarrow
● One table for all trucks where the data values were stored as key-value pairs.

The primary advantage of the Narrow data models is that any key value pair can be stored
while Wide data models are limited to the fixed column names. It was assumed that the fixed
Wide data models would have better performance and we looked to see how much the
Narrow data model’s flexibility gave up performance wise.

While GridDB has two different container types, time series for temporal indexed data and
collections for everything else, only MultiWide uses time series containers for the reading and
diagnostic tables due unique key constraints on the timestamp column. Multiple trucks can
use the same timestamp in SingleWide multiple tags use the same timestamp in MultiNarrow
while both conditions are true in SingleNarrow.

GridDB Data Model Comparison

3 / 21

Data Sample

The following tables show a sampling of the data stored in each table.

MultiWide

SingleWide

GridDB Data Model Comparison

4 / 21

MultiNarrow

SingleNarrow

GridDB Data Model Comparison

5 / 21

GridDB

GridDB is an open source time series database optimized for IoT and Big Data with NoSQL
and SQL interfaces. GridDB’s hybrid composition of in memory and Disk storage architecture
is designed for maximum performance while its unique Key-Container data model represents
data in the form of collections that are referenced by keys making it ideal for applications with
large amounts of heterogeneous data.

Execution Environment

The benchmarks were implemented using Java using the GridDB NoSQL interface for data
ingestion and both the GridDB NoSQL (TQL) and JDBC interface (SQL) for querying. They
were run on an Azure Standard D4s v3 Virtual Machine using Ubuntu 20.04 with GridDB
version 5.3.

Benchmark Configuration

The performance comparison generated data for eight trucks over a three month period in ten
second increments. Each truck would have a total of 267,840 readings for a total of 2,142,720
readings.

GridDB Data Model Comparison

6 / 21

Ingest/Load Performance
To load data into GridDB, the application used 8 threads (1 per truck) to insert batches of
1000 readings using GridDB’s NoSQL interface which is significantly faster for ingestion than
the SQL interface as the SQL interface does not support batch insert in version 5.3.

MultiWide took the least amount of time to ingest all 267,840 readings with small increases for
SingleWide and MultiNarrow data models while the SingleNarrow data model took
significantly longer. Calculating ingestion rates shows the differences further.

GridDB Data Model Comparison

7 / 21

The MultiWide schema inserted 104,208 readings per second while the SingleWide schema
inserted 93,511 readings per second. The performance dropped considerably for the Narrow
schemas due to them inserting 6x the number of rows.

sw_tags
id name fleet driver model app_version load_capacity fuel_capacity fuel_consumption

0 0 truck_0 North Derek F-150 v1.0 2000.0 200.0 15.0

sw_readings
id timestamp latitude longitude elevation velocity heading grade fuel_consumption

0 0 2022-12-31 16:00:00 45.998 94.853 97.0833 86.503475 205.98 -3.76 9.0222

sw_diagnostics
id timestamp fuel_state current_load status

0 0 2022-12-31 16:00:00 173.847796 0.340449 1.0

If we compare the writes made for one reading with SingleWide and Single Narrow we see
that SingleWide writes 3 rows while SingleNarrow writes 18 rows.

sn_tags
id tag strVal dblVal

0 0 name truck_0 0.0
1 0 fleet North 0.0
2 0 driver Derek 0.0
3 0 model F-150 0.0
4 0 device_version v1.0 0.0
5 0 load_capacity none 2000.0
6 0 fuel_capacity none 200.0
7 0 fuel_consumption none 15.0

sn_readings
timestamp tags_id key value

0 2022-12-31 16:00:00 0 latitude 62.242578
1 2022-12-31 16:00:00 0 longitude -75.184678
2 2022-12-31 16:00:00 0 elevation 44.387040
3 2022-12-31 16:00:00 0 velocity 66.024441
4 2022-12-31 16:00:00 0 heading 321.052663
5 2022-12-31 16:00:00 0 grade -10.488837
6 2022-12-31 16:00:00 0 fuel_consumption 2.861151

sn_diagnostics
timestamp tags_id key value

0 2022-12-31 16:00:00 0 fuel_state 190.683612
1 2022-12-31 16:00:00 0 current_load 0.004060
2 2022-12-31 16:00:00 0 status 1.000000

MultiNarrow inserted 51,209 readings per second and SingleNarrow inserted just 4578
readings per second. The large drop in performance with SingleNarrow is likely due to the
increase of overhead of not only inserting more rows but also having to build multiple indexes
for each row.

Data Storage Size

After the data was loaded, the total storage size was examined with the gs_stat tool.
storeTotalMem increased dramatically as the number of indexes and number of rows inserted

GridDB Data Model Comparison

8 / 21

increased with MultiWide requiring the least amount of storage and SingleNarrow requiring
the most.

GridDB Data Model Comparison

9 / 21

Query Performance
For each query type, queries were built using GridDB’s NoSQL interface (TQL) and GridDB’s
JDBC interface (SQL) to see how not only each data model performed but the differences in
performance

Last Location

The Last Location query fetched the most recently recorded location of each truck. Using the
time_prev(*, now()) TQL time series function that was only suitable for the MultiWide
query as it is the only data model using time series containers. Using time_prev showed
remarkable performance while all data model schemas required the use of some variation of
order by timestamp desc limit 1 query which does not perform as well.

Low Fuel

The Low Fuel query fetched all trucks that currently had less than 10% of their total fuel
capacity. Like Last Location, the low fuel query used time_prev(*, now()) for MultiWide while
all other queries once again used order by timestamp desc limit 1.

GridDB Data Model Comparison

10 / 21

Average Load

Average Load calculates the average load per fleet where there are four fleets. In this query,
Single table data models have relatively better performance compared to queries whose
result only pertain to a single truck as only one table would need to be queried for each fleet
rather than querying individual trucks and computing the average.

GridDB Data Model Comparison

11 / 21

Max Daily Velocity

Max Daily Velocity finds the maximum daily velocity for every day over three months for every
truck. In this query, the SQL group by range functionality is used while TQL needs to perform
multiple queries for every individual day. The MultiWide data model still performs the best, but
the SQL query for SingleWide also performs relatively better than its TQL counterpart while
the Narrow data models still have poor performance.

To explain why TQL and SQL relative performance can differ when switching data models we
need to consider the time required for sort processing. The difference was noticeable due to
the SQL queries being used. As far as data reading processing is concerned, TQL and SQL
are roughly the same but as there is no need to specify acquisition conditions, it can be done
efficiently using TQL. Moreover, if the query is of a scale that can be processed in 10ms to
100ms it is likely more suitable to use TQL.

Since the query is executed by specifying additional conditions that are not available in
MultiWide, data read time is important. The difference between collections and time series
container types will also affect performance greatly depending on whether or not an index is
used and which index is used as the choice depends on how the search conditions are
written in the query. The difference may become smaller if you combine SQL, TQL, index
usage, etc. However, SQL is relatively better suited for processing complex conditions and
large amounts of data in a single statement such as using join statements.

Average Daily Fuel Consumption

Like Max Daily Velocity, Average Daily Fuel Consumption calculates an aggregate for every
day in the three month time range but instead of performing the calculation for every truck, it
performs it for a single truck. While MultiWide is still the fastest, MultiNarrow’s performance
improves to be greater than that of SingleWide.

GridDB Data Model Comparison

12 / 21

Time Bucketing vs. Group By Range

In this comparison, we compared using the SQL group by range feature versus executing
multiple SQL queries for each day in the time range using the SingleWide data model. The
Average Fuel Consumption query was used as it meant only query would need to be
executed versus a query per truck with the MultiWide data model. SQL was used for both
queries to remove the differences between SQL and TQL execution. Group By Range
performs considerably better as expected except for the MultiWide data model. This is likely
because with SQL, the query is executed by specifying additional conditions that are not
available in MultiWide, data read time is important. As well as the difference between
collections and time series, performance also changes greatly depending on whether or not
an index is used and which index is used (the choice depends on how the search conditions
are written).

GridDB Data Model Comparison

13 / 21

Partitioning

In this comparison, the effect of GridDB’s single table partitioning function
(https://www.toshiba-sol.co.jp/en/pro/griddb/docs-en/v4_0_3/GridDB_TechnicalReference.htm
l#sec-4.3.8) was examined using the SingleWide data model. Partitioning is only significantly
better for Average Load which is likely caused by the entire data set being aggregated versus
only fetching the last points in the Last Location and Low Fuel queries. Max Daily Velocity and
Average Daily Fuel Consumption use group by range which appears to have a negative
impact on performance for unknown reasons.

GridDB Data Model Comparison

14 / 21

GridDB Data Model Comparison

15 / 21

Other Considerations
The primary consideration not related to performance is the difficulty in writing individual
queries.

TQL moves most of the logic to the application programming language while the SQL queries
themselves can be slightly more complex. Thus for TQL, the Implementation (queries plus
supporting Java code) itself is longer but the queries themselves are shorter. To show the
difference, here is the code for the SingleWide model’s TQL and SQL functions.

TQL Average Load Query:
public void avgLoad() throws GSException {

ArrayList<SWTags> trucks = getTrucks("");

HashMap<String, Double> sums = new HashMap();

HashMap<String, Integer> counts = new HashMap();

List<com.toshiba.mwcloud.gs.Query<AggregationResult>> queryList = new ArrayList();

for(SWTags truck : trucks) {

Container<Integer, Row> container = store.getContainer("sw_diagnostics");

if (container == null){

System.err.println("Container sw_diagnostics not found.");

}

queryList.add(container.query("select avg(current_load) where id="+truck.id,

AggregationResult.class));

}

store.fetchAll(queryList);

for (int i = 0; i < queryList.size(); i++) {

SWTags truck = trucks.get(i);

String fleet = truck.fleet;

com.toshiba.mwcloud.gs.Query<AggregationResult> query = queryList.get(i);

RowSet<AggregationResult> rs = query.getRowSet();

if (rs.hasNext()) {

AggregationResult row = rs.next();

double avg = row.getDouble();

if (sums.get(fleet) == null)

sums.put(fleet, avg);

else

sums.put(fleet, avg+sums.get(fleet));

if (counts.get(fleet) == null)

counts.put(fleet, 1);

else

counts.put(fleet, 1+counts.get(fleet));

}

}

for (String fleet : sums.keySet()) {

Double avg = sums.get(fleet) / counts.get(fleet);

if(first)

System.out.println(fleet+": "+avg);

}

}

SQL Average Load Query:

GridDB Data Model Comparison

16 / 21

public void avgLoad() throws SQLException {

Statement st = conn.createStatement();

ResultSet rs = st.executeQuery("select * from sw_tags t inner join (select id,

avg(current_load) from sw_diagnostics group by id) d where d.id = t.id group by

fleet");

ResultSetMetaData md = rs.getMetaData();

while (rs.next()) {

if (PRINT_DATA) {

for (int i = 0; i < md.getColumnCount(); i++) {

System.out.print(rs.getString(i + 1) + "|");

}

System.out.println("");

}

}

rs.close();

st.close();

}

TQL requires three times the amount of Java code to implement the five queries (above)
while the queries themselves are somewhat longer with SQL.

GridDB Data Model Comparison

17 / 21

The difficulty in creating either set of queries is subjective and depends on the developers
skills and preference.

GridDB Data Model Comparison

18 / 21

Conclusion
Each of the data models have their own set of pros and cons, but the MultiWide data schema
performed the best in all performance comparisons, as expected. The TQL queries, on the
other hand, usually perform better than SQL, but using SQL, and especially the group by
range functionality, can have query performance benefits while the lower weight TQL interface
is always better for writing. Of course, an application can utilize multiple data models so each
component uses the data model with the ideal trade offs.

If migrating from a conventional SQL database with single tables, SingleWide still performs
adequately for applications that cannot be implemented otherwise. The performance
advantage of MultiWide, which achieves performance through parallel processing on the
applications side, may not provide enough benefit to re-implement applications using TQL.
Single tables versus multiple tables have the primary benefit of being able to use SQL JOINs.

The flexibility a Narrow schema provides is rarely worth the performance loss and increased
storage as compared to a Wide schema, especially considering columns can easily be added,
removed or modified. Narrow should be considered if the data collected as a disjoint set of
value keys or the keys may change often such as when building a software monitoring
system.

Finally, using the NoSQL interface does move some computational load to the application
instead of the database, which may be beneficial when scaling as it can be easier to scale
stateless application servers rather than stateful database servers. However, SQL is relatively
better suited for processing complex conditions and large amounts of data in a single
statement such as joins or subqueries while TQL would require multiple queries and
in-application data processing to do the same. Thus, SQL is recommended unless extremely
low latency is required.

While we were trying to mimic particular use cases, this may deviate depending on the query
frequency and patterns of the entire system. The source code for the performance
comparisons is available on GridDB.net’s GitHub here:
https://github.com/griddbnet/data-model-comparison

GridDB Data Model Comparison

19 / 21

Appendixes
Load/Query Performance Raw Data

MW TQL MW SQL SW TQL SW SQL

Multiple
Queries
using TS
Container

Multiple
Queries
using TS
Container

Multiple
Queries
using
Collection

Joins/Sub
Queries
using
Collection

NoSQL Load (records/sec, higher is better) 104207.76 93511.39

NoSQL Load (seconds, lower is better) 20.56 22.91

storeTotalUsed (MB, lower is better) 226.19 576.88

last-loc (queries/sec, higher is better) 92.59 5.94 0.05 5.89

low-fuel (queries/sec, higher is better) 172.41 6.21 31.55 6.78

avg-load (queries/sec, higher is better) 13.12 19.69 2.75 5.31

n-max-daily-velocity
(queries/sec, higher is better) 2.46 1.48 0.09 0.58

1-avg-daily-fuel-consumption
(queries/sec, higher is better) 20.62 12.25 0.51 4.67

MN TQL MN SQL SN TQL SN SQL

Multiple
Queries
using TS
Container

Multiple
Queries
using TS
Container

Multiple
Queries
using
Collection

Single
query using
Collection

NoSQL Load (records/sec, higher is better) 51208.57 4577.64

NoSQL Load (seconds, lower is better) 41.84 468.08

storeTotalUsed (MB, lower is better) 1290.06 1851.44

last-loc (queries/sec, higher is better) 0.03 0.86 0.02 0.74

low-fuel (queries/sec, higher is better) 0.06 1.97 0.05 2.60

avg-load (queries/sec, higher is better) 1.06 5.91 0.29 2.63

n-max-daily-velocity
(queries/sec, higher is better) 0.02 0.08 0.03 0.00

1-avg-daily-fuel-consumption
(queries/sec, higher is better) 0.14 4.77 0.08 0.31

Group By Range Comparison Raw Data

GridDB Data Model Comparison

20 / 21

Group By Range 4.6729

Without Group By Range 0.7976

Partitioning Comparison Raw Data

With
Partitioning

Without
Partitioning

Last Location 5.530973451 5.889

Low Fuel 7.007708479 6.780

Average Load 8.110300081 5.311

Max Daily Velocity 0.457101065 0.580

Average Daily Fuel Consumption 3.661662395 4.673

Implementation Length Raw Data

The number of lines of code needed to implement each data model’s query:
Lines of Code

Query SQL TQL

MultiNarrow 135 317

MultiWide 137 306

SingleNarrow 102 315

SingleWide 100 301

The number of characters used in the executed queries used to implement the compared
query for each data model:

Characters

SQL TQL

MultiNarrow 1124 781

MultiWide 985 500

SingleNarrow 1314 1011

SingleWide 1125 637

GridDB Data Model Comparison

