GridDB
Fundamentals

How to Build IoT Applications using GridDB

Table of Contents

Chapter 1. An Introduction to 10T and Time-Series Data..........ccccccuuuuuuuunuiiiiiiiiiiiiiiiiieiieiieeiieeeeeeeeeeeee 5
1.1 The loT Data DelUQe. . .ooeeiiiiieeeeee i e eeeieieeieeeeeeeeeeeeeeens 5

1.2 Why Traditional Databases StrugQle.........oeeeeeeiiiieeeeiieieiiieeiiiieeeeeeee e, 6

1.3 Introducing GridDB: A Database Built for 10Tcvvvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 7

1.4 GridDB in Action: A Smart Factory Use Cas€.........eeeeeieiiiiiiieiiiiiiiiiiieiieieiiieiieiiieiieieiieiieienns 8

1.5 SUMIMIAINY ettt ettt ettt ettt ettt ettt ettt ettt ettt e et e e e et 9
Chapter 2. Core Concepts: Containers and Data Modeling.......oooooiiiiiiiiiiiiiiiiei e 11
2.1 The Container: Your Basic Unit of Storage..........ueeeeeiiiiiiiieiiiiieieiieieiiiiieieeeeieeeieeeieeee 11
2.2 The First Principle: Design for a JOIN-less World..........oovvveiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeee 12
2.3 The "One Container Per Sensor" Model 13
2.4 A Concrete Schema EXampPIE.......uuuuuuueeeieeeeeeeeeieeeieeeeeeeeeeeen 13
2. D SUIMIMIAIY .ot ettt e e et et ee e et eeees e ettt eeeeteetteeee et aeeieeetttererr e ieeeeetreeernens 15
Chapter 3. Working with Time-Series Data............oovvvveeeeeeiiiiieiiiiiiiiieieiieeeieeieeiiieeeeeeeeieeieeiennn 17
3.1 Managing the Data Lifecycle: Partitioning and EXPiry...........oeeeeeeeeneeeiiiiiiiiiiineiiiiiiiieen, 17
3.2 Querying with Time: SQL Time-Series FUNCHIONS......evvveeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 18
Downsampling with GROUP BY RANGEocooiiieiiiiiiiiiiiiiiiiiiiiiieenne 18

3.3 Aggregation and Real-Time ANalVtiCS......ooueviiiiieeiieieeieieeiiieeeeeeee e, 19
3.4 Optimizing for Bulk Operations............uiiveeueeeeeii e e e e e e eeseeeeeeieeeeeeeeeeeeees 20
3.5 SUMMAIY. ittt 20
Chapter 4. Writing Data t0 GridDB........cooeieiiieiiiiiiiiiiiieeieeeeeieeeee 22
4.1 The Core Pattern: Writing with the Java Client...........ooovvvvevueiieeiieeieieeeeee e, 22
Connecting to the GridDB ClIUSter. . ..uuueeiiieieiiiiieeeieieeeiiiieceeeee e, 22
Defining a Schema with a Java ClasS.........eeiiiiiiiiieeiiieeeeee e 23
Putting @ SiNgl€ ROW. ... oot eeeees 23

4.2 The Key to Performance: Batch Inserts with multiPut()...........ooeveeeeeeeeeeeeeeeeeeeeeeeeee 24
4.3 Alternative Methods for Writing Data..........eeeeeiiiiiiiiiiiieee e 24
Wrting With Py NON. oot e e e e e e e e e eee e eeeeeeieeee b eaeaaeass 25
Writing with the JDBC DriVer......eeiiieiiiiiieiieieieeeiiieeeeeee e, 25
Writing with the Web APl 26

4.4 Summary 26
Chapter 5. Querying Data from GridDB..........cooeveeeeueeeiiiiieiiiiiieeee e eeeeeeeeeeiieieeeeeeeeeeees 28
5.1 The Primary Method: Querying With SQL.......cooiiiiiiiiiieiiee e eeeeieee e e eeeeeeees 28
Fetching a Set of Rows With JDBC.......ooiiieeeeeeeiieieeiiiieiiieieeeeeeeeeeeeiieeie e, 28
Server-Side AQQregationS. uue e 29

5.2 Querying from Python: The Data Scientist's TOOIKit..........ccccceeeeiiiiiiiiiiiiiiieiieeeee 30
Basic Queries in PYthON...ouuveeeeiiiiiiiiiiiiieeiei i 30

The Power of Pandas DataFrames.......ooouvvveeueuueiiiiiiiiieeeeeeee e 31
Python ANd APAChe AMTOW. .. .ooieeeeeiieeeee ettt et ettt e et e e et e eeeeeeeeeeens, 32

5.3 Alternative Query INterfaces.........uwwuuuuuueeiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiiie e 32

Using SQL With the JDBC DIV el . . ittt ittt ettt ttr e ttte e tteretetenatereteienatereazienaieeens 32

USING the WED AP.....uee ettt e et e e ettt e e st e e e e e e e e eeeeeas 33
B4 SUMIMAIY et 33
Chapter 6. Performance Tuning and Optimization Strateqi€s.........ccccvveeeeeiiieiiiiiiiiieeeeeeeeee. 35
6.1 The Primary Bottleneck: Network LatenCy............cooeeiieeiiiiiiiiiiiiiiiiiiicieiiiciieiiie 35
6.2 Optimizing Write Operations: The Power of multi_ puf()..........ooooooeeeieeeeeeieeiiiiiiiiieennn... 35
The Inefficient Approach: ROw-by-ROW pUt().......coeeeieeiiieiniiiiiiiiiiiiiiiiies 35
The Optimized Approach: Batching with multi put().............evveeeveeeeeiiiiiieiieiiieeieeiiieeeenee 36
6.3 Optimizing Read Operations: Querying in BulK................eeeeeeeeeeeeeiieieiieeeiieeeieeieeeeeeeeeee.. 36
The Inefficient Approach: Single-Key Queries in @ LOOPD.....uueeiiiiiiiieeiiieeeeeieeeiiieeiinnn. 36
The Optimized Approach: MULTI GET and IN ClausSes...........ccceeeeieeiii 37
Chapter 7. Real-Time Streaming with Apache Kafka..........oooeeeeeeiiieeiiiiiiiiieiieiiieeieieieeeieeei 38
7.1 The Role of Kafka in an [0T Architecture...........ueeieieiiiiiieiieieieeeeieieeeeeeee e 38
7.2 The GridDB Kafka Connect FrameWoOrK..........oveeeeeeeeeiiieiiiiiiieiiiiiiiiieieieiiiiieeeeieeeiiieeeiiienenn, 38
7.3 Ingesting Data: The GridDB Sink CoONNECIOr. ...oooevvviieeeeeeiiiiiiiiiiiieeieeeeeeieeeeeeeeeeeeeeeee 39
Setup and Configuration.........uvveiiiiiiieiieeeeeeeeeeee e, 39
Sending Dat@.....eeeeeeiiiiiiiiiiiiiiiiiiii e 40
7.4 Exporting Data: The GridDB Source ConNeCtOr.vuvevveeeeeieiiiiiiiiiiiiieieieeeeieeeeieeeeieeeeeeeeen 40
7D SUMMMIAIY oot e ettt e ettt e ee e e e et eeeeetteere et eeeteeeteerre e eeeeeseees 41
Chapter 8. Building a Secure API with FIaSK.......ooovieiiieeeeeriiiiiiiiiiiieiiiiieeiieeeieiieeeiieeeieeeeeeeeeiiinnnn 42
8.1 The Architecture: GridDB as a Unified Data and Identity Store............oocoovvvveveeeeeeeeeeeeeeeenee... 42
8.2 Project Setup and DEPENAENCIES.uuuuereeeeiieiieeieeeieeeeeeeeeeeeeeeeeeeeee e i et e eee i e e e e e ieeieeeeeeeeeeeeeeees, 42
8.3 Schema Design for Authentication...........couveeeeiiiiiiiiiiiiiiiieieiiiiiiiiiiiiieeieieeeieiiiiiiiieeeeeeeeenn, 43
8.4 Implementing the Authentication FIOW.........oeevvuueeiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 43
USEr REQIS A ION. ...ttt e et ettt e e e e et eeeeseteeeseesaeeessesaeeeeetieeeeretaaeaaees 44
Token 1SSUANCE (LOQIN)...uuuuueueieiiieeeieeeiieieeeiiieeeiie e ieee e ieeeeeeeieeeeeeee, 44
8.5 Protecting API ENAPOINtS....oooiiiieieiiiee ittt 45
8. SUMMMIAIY ittt et e e e e et et eeeeeetttee et eeteeetttrreer e eetetetterrrraeeeerees 46
Chapter 9. Introduction to GridDB CloUd........eueeueiiiiiiiiiiieeee et 47
R L = SR T Te 1] S T O (o TN Lo 1 47
9.2 Why Use the Cloud? On-P . M | Servi
9.3 Interacting with GridDB Cloud: The Web APL...ooooeiiieiiiiiiiiiiieieeeiieeeeiieeieeei 48
9.4 A Look Ahead: The Broader GridDB ECOSYSteM.....cccuuzzieeiiiiiiiiiiiiiiieeee 50
9.5 SUMMANY . ettt ettt ettt 50
Chapter 10. Serverless Integration with Microsoft Azure 10T HUb.......ooovvvveveeeeiieeeiiiieieieeeeeeeee 51
10.1 The Serverless 10T ArchiteCtUre.oeeeeiieeeeeeeee e 51
10.2 Device Provisioning and SECUNLY.....oeeeeieeeieeeieeeiiiiieiiieiiiiiiiiiiiieeieeenen 52
10.3 The Ingestion Engine: An Azure FUNCHON.uueeeiieeiiiiiiiieeeieeeiiiieeeeeeeeeeeeieeieeeeeeee 53
10.4 Best Practices for Serverless Inteqration.............eeieiiiiiieeeiieeeeeeeeeeeeeeeeee e, 54
10.5 SUMMANY . euuuieiiiiiiiiiiiiiiiiiieiiieiieii ettt ee et e et ettt ettt ettt e e e e e e e e e e e e e i e e i eeeiieeeeene, 54
Chapter 11. Cloud-Native Visualization: Pairing GridDB Cloud with Grafana Cloud................... 56
11.1 The Cloud Advantage: Simplicity and Scalability............ccceeeieiiiiiiiiiiiiiee 56

11.2 The Integration Architecture: Connecting via the Infinity Plugin............cceeevivieeeniiiieenn... 56

1. Initial Configuration and SECUIMLY..........uueeeeeiieeiieeieeeeeeeeeeeeee e ee e e e e e e e e e eeeeeeeeeas, 57
2. Setting Up the Infinity DataSOUIrCe. . .oeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiieiieiieenn 57
3. Querying and Visualization............uueeeiieiiiiiiieeee e, 57
Chapter 12: Streamlining Cloud Management with the GridDB Cloud CLI...........cccvveeeeeeeenn..... 59
12.1 The "Why" of a Command-Line Interface...........cooooueueureuneuiniiiiiiiiiiiiiiieiiiiiiiiiieeeenne 59
12.2 Installation and Initial Configuration............ooeeeieeiiiiieeieeeeeeeeee e 59
12.3 Core Operations: Querying and INtrosSpection.............ccccuuueeuueeuereeeeieieeieeeeeeiieeeeeeeeeeess. 60
12.4 The CLI in Practice: A Tool for Automation...........eeeeeeeeeeiiiiiieiiiiiiiiieiieeeeeiiiiecieeeeee, 62

Chapter 1. An Introduction to loT and Time-Series Data

The world is becoming a network of sensors. From the watch on your wrist tracking your heart rate, to
the thermostat on your wall adjusting to the weather, and the industrial machinery on a factory floor
predicting its own maintenance needs, we are surrounded by the Internet of Things (loT). At its
core, loT is a vast, interconnected system of physical devices that collect and exchange data about
the world around them.

This explosion of connected devices is not just a novelty; it's a revolution. It enables real-time
insights, intelligent automation, and efficiencies that were previously unimaginable. But this revolution
is built on a tidal wave of data—a constant, high-velocity stream of information that presents a
unique and formidable engineering challenge. This chapter introduces the nature of that challenge
and why a specialized database like GridDB is essential for building robust, scalable loT applications.

1.1 The loT Data Deluge

An |oT device is fundamentally a data producer. A single sensor in a smart factory might report
temperature, vibration, and pressure every 100 milliseconds. A connected vehicle might stream its
location, speed, and fuel status every second. Now, multiply that by thousands or even millions of
devices. The result is a data management problem characterized by three key attributes:

e Volume: The sheer amount of data is immense. A modest deployment of 1,000 sensors
reporting every second generates over 86 million data points per day. Traditional storage
systems can quickly become overwhelmed by the cost and complexity of managing this scale.

e Velocity: Data arrives at an extremely high speed. The database must be capable of ingesting
millions of writes per second without falling behind. This is often called the ingestion rate, and
for many IoT systems, it is the most critical performance metric.

e Variety: While much of the data is uniform time-series data (a value and a timestamp), the
devices themselves have different attributes and metadata. A temperature sensor has a
location and a calibration date, while a smart meter has a customer account number and a
service tier. The system must manage both the fast-changing sensor data and the
slow-changing descriptive data efficiently.

1.2 Why Traditional Databases Struggle

When faced with this data deluge, an engineer's first instinct might be to reach for a familiar tool, like
a relational database (e.g., PostgreSQL, MySQL) or a general-purpose NoSQL database. However,
these systems were designed for different problems and often falter under the unique pressures of
loT workloads.

Relational databases, built on a foundation of structured tables and complex JOIN operations, are
poorly suited for the task. Ingesting billions of simple, timestamped rows can be inefficient, and
querying data across a time range—a fundamental IoT operation—can be surprisingly slow.
Furthermore, their rigid schemas make it cumbersome to adapt as new device types with different
data structures are added to the network.

While some NoSQL databases offer better scalability, they often lack the specific features needed for
time-series analysis. A general-purpose document store or key-value store doesn't inherently
understand time, forcing developers to build complex, application-level logic for common tasks like
data aggregation, downsampling, or setting automatic data expiry policies. This leads to brittle,
unperformant systems.

The bottom line is that loT isn't just another "big data" problem. It's a problem that demands a
purpose-built solution.

1.3 Introducing GridDB: A Database Built for loT

GridDB is an open-source, highly scalable time-series database engineered specifically to solve the
challenges of IoT. It was designed from the ground up with the understanding that in 10T, time is the
primary axis. This principle influences every aspect of its architecture.

GridDB combines the speed of in-memory processing with the durability of disk storage, all within a
distributed architecture that can scale horizontally by simply adding more nodes. Let's look at its core
architectural tenets:

e Key-Container Data Model: Instead of tables or documents, GridDB uses a Container model.
A container holds a collection of rows with a defined schema, similar to a table. You access
containers with a key (its name). This model is simple, powerful, and maps naturally to lIoT
device data.

e Time-Series First: GridDB has a special TIME_SERIES container type where the timestamp is
the primary key. This container is highly optimized for complex time-based queries, such as
fetching data from the last hour, calculating moving averages, or interpolating missing values.

e In-Memory Architecture: GridDB prioritizes performance by leveraging a hybrid in-memory
and disk-based system. Hot data (the most recent, frequently accessed information) is kept in
memory for lightning-fast reads and writes, while older, colder data is flushed to disk for
cost-effective long-term storage.

e Elastic Scalability: GridDB is a distributed database. As your data volume and ingestion rate
grow, you can scale the system horizontally by adding more commodity servers to the cluster.
This peer-to-peer architecture ensures there is no single point of failure.

This specialized design yields significant performance benefits. In the industry-standard Yahoo!
Cloud Serving Benchmark (YCSB), GridDB has been shown to outperform other popular NoSQL
databases like Cassandra by up to 25x on read-heavy workloads and 7x on write-heavy workloads,
which are typical patterns in loT applications. Read more about that in the Cassandra White Paper:

https://griddb.net/en/docs/Fixstars_NoSQL_Benchmarks.pdf

AS MUCH AS HIGHER THROUGHPUT WITH GridDB!

1,000K

« GridDB cassandra .

800K

625K

600K
529K

400K

271K 263K
200K

36K 26K 25K S 18K

Throughput (Operations Per Second)

Update Heavy Mostly Reads Read Only Read Latest Read, Modify, Write
A B C D F

https://griddb.net/en/docs/Fixstars_NoSQL_Benchmarks.pdf

1.4 GridDB in Action: A Smart Factory Use Case

To make these concepts concrete, let's consider a practical scenario. Imagine you are tasked with
building the data backend for a smart factory with 5,000 machines, each equipped with a
temperature sensor. Each sensor reports its reading once per second.

The Scale of the Problem:
e 5,000 writes per second
e 18,000,000 writes per hour
e 432,000,000 writes per day

How would we model this in GridDB? We would use two types of containers:

1. A TIME_SERIES Container for each sensor. We could create containers named
temp_sensor_0001, temp_sensor_0002, and so on. Each container would have a simple
schema like (timestamp TIMESTAMP, temperature DOUBLE). This one-container-per-sensor
model is highly efficient for write-heavy workloads, as each stream of data is written to its own
dedicated location.

2. A COLLECTION Container for metadata. A COLLECTION container is suited for storing static
or infrequently updated data about the devices. We could create a container named
machine_metadata with a schema like (machine_id STRING, location STRING, install_date
TIMESTAMP).

"siteA_equip" "siteA_s012"
Collection TimeSeries

id name specification timestamp heat_rate temperature
equip001 transformerl | o transfomer 4/28/20011... 78.3 479
equip002 transformer2 | yyy transfomer 4/28/20011... 829 63.4
equip003 . breakerl xxx breaker
equip004 . breaker2 yyy breaker 20)
equip005 cablel zzz cable :j el ST T

’ 1."‘3) ﬂICD 1: ;E 5 ;J @ ICO 1330 1730

2 types of container, collection and time series
A container is like the RDB table of a row/column

This design cleanly separates the high-velocity event data from the low-velocity descriptive data.
With this structure, you get the best of both worlds: the speed and flexibility of a NoSQL database
for data ingest, combined with a powerful and familiar SQL query language for analysis.

For example, to find the average temperature for a specific sensor over the last hour, the query is
simple and intuitive:

SELECT AVG(temperature)
FROM temp_sensor_0001
WHERE timestamp > NOW() - 1 HOUR;

Note: Thinking in Containers: The "No JOINs" Philosophy

If you come from a relational database background, the most important mental shift is to embrace a
denormalized data model. Though GridDB supports JOIN operations across containers, it is
generally not the best practice when designing your application.

Instead of joining tables at query time, you model your data to avoid the need for joins. This often
means storing related information together in the same container or, as in our example, separating
data by its access pattern. This approach is fundamental to building high-performance systems in the
world of distributed databases.

1.5 Summary

The Internet of Things represents a paradigm shift in how we interact with the physical world, driven
by an unprecedented volume and velocity of data. Traditional databases were not designed for the
unigue demands of time-series data at this scale.

GridDB provides a purpose-built solution, offering a scalable, performant, and developer-friendly
platform for loT applications. Its key-container model, first-class time-series support, and distributed
architecture make it an ideal foundation for turning sensor data into actionable insights.

In the next chapter, we will dive deeper into the core concepts of GridDB. We'll explore its
architecture in more detail, get hands-on with its data model, and set up your first GridDB cluster.

Chapter 2. Core Concepts: Containers and Data Modeling

In a traditional relational database, schema design often feels like an exercise in

normalization—breaking data into distinct tables to eliminate redundancy, then reassembling it with
JOINs. When working with a distributed time-series database like GridDB, you must unlearn this

instinct. Here, the rules are different, and they are driven by the relentless demands of performance

and scale.

Effective data modeling in GridDB isn't about abstract normalization rules; it's a practical discipline

focused on one primary goal: designing for your access patterns. How you structure your data will

directly determine how fast you can write it and how efficiently you can query it. This chapter

introduces the core building blocks of a GridDB schema—Containers—and the fundamental

principles for modeling data in a high-throughput IoT environment.

2.1 The Container: Your Basic Unit of Storage

The fundamental unit of organization in GridDB is the Container. You can think of a container as
being analogous to a table in a relational database. It has a name, and it holds a collection of rows,
where each row conforms to a predefined schema (i.e., a set of columns with specific data types).

Key-Container

)
—

Key
I

co (s3] c2 c3

Val Val Val Val
Val Val Val Val

Container

~ Schema ‘

GridDB

10

GridDB has two primary types of containers, each optimized for a different kind of data:

e TIME_SERIES Containers: These are the workhorses of any loT application. They are
specifically designed to store timestamped event data. In a TIME_SERIES container, one column
must be designated as the RowKey and be of the TIMESTAMP type. This structure allows
GridDB to perform highly optimized time-based operations, such as rapidly ingesting new data
points or querying for data within a specific time range.

e COLLECTION Containers: These are general-purpose containers suitable for storing data that
isn't primarily defined by time. This is where you store metadata, device attributes, or
configuration information. In a COLLECTION container, the RowKey can be of type STRING,
INTEGER, LONG, or TIMESTAMP.

The most critical pattern in GridDB schema design is the clean separation of these two data types.
High-velocity, time-stamped sensor readings belong in TIME_SERIES containers. Low-velocity,
descriptive metadata belongs in COLLECTION containers.

2.2 The First Principle: Design for a JOIN-less World

As we noted in Chapter 1, GridDB does support JOIN operations across containers, but they are
discouraged. Forgoing the use of JOINs can be a deliberate design choice that enables horizontal
scalability and predictable query performance. A JOIN is an expensive operation in a distributed
system, and by designing it out of the database engine, GridDB encourages you to adopt a more
scalable data model.

This leads to a simple but powerful guideline: denormalize your data. Instead of striving to eliminate
every piece of redundant data, you should intentionally duplicate data where it makes sense for your
queries.

Let's revisit our smart factory example. We have sensor readings (time-series data) and machine
information (metadata). In a relational world, you might have a readings table and a machines
table, and you would JOIN them on machine_id to find out which location a particular reading came
from.

In GridDB, you handle this differently. The sensor data goes into a TIME_SERIES container. The
machine metadata (ID, location, installation date) goes into a COLLECTION container. If a query
needs to know the location of a sensor that triggered an alert, your application would perform two
separate, simple queries:

1. Fetch the alert record, which contains the sensor id.

2. Fetch the metadata for that sensor_id from the machine_metadata container.
These two fast, indexed lookups are far more scalable than a single, complex distributed join.

11

Warning: The Perils of a "God" Container

A common anti-pattern for developers new to GridDB is to create a single, massive TIME_SERIES
container to hold readings from all sensors. While this seems simple initially, it creates a major
performance bottleneck. Because GridDB provides ACID guarantees at the container level, all writes
to this single container become serialized, creating contention and limiting your ingestion throughput.
The key to performance is to spread the load across many containers.

2.3 The "One Container Per Sensor"” Model

The most effective and scalable pattern for modeling high-frequency loT data in GridDB is the one
container per sensor model. Instead of a single container for all temperature readings, you create a
separate TIME_SERIES container for each individual temperature sensor.

For our factory with 5,000 sensors, this means you would create 5,000 TIME_SERIES containers. This
might sound like a lot, but it is the key to unlocking GridDB's performance. This approach provides
several major advantages:

e Massive Write Parallelism: With each sensor writing to its own dedicated container, writes can
happen in parallel across the cluster without contention. This is how you achieve ingestion
rates of millions of data points per second.

e Query Isolation: When you query for data from a single sensor, you are reading from a small,
dedicated container. This is significantly faster than searching for that sensor's data within a
massive, shared container.

e Schema Flexibility: If a new version of a sensor starts reporting an additional data field, you
only need to define a new schema for that sensor's new container. It has no impact on the
thousands of other existing containers.

To manage this many containers, a consistent naming convention is essential. For example, you
might name your containers using a pattern like DeviceType_FacilitylD_DevicelD, which would result in
names like:

e temp FO1_A34C

e vibration_FO1_B81A

e pressure_FO2_A35B

2.4 A Concrete Schema Example

Let's formalize the schema for our industrial factory. We'll define the schemas using Java class
syntax, which is how the GridDB Java client maps objects to container rows.

12

First, the schema for our individual sensor data containers. This is a "narrow" model, with one row per
reading.

Java
// Schema for a TIME_SERIES container, e.g
public class SensorReading {
@RowKey Date timestamp; // The time of the reading is the RowKey
double value; // The sensor's value
String status; // e.g., "NORMAL", "WARNING"

., "temp_F01_A34C"

Next, the schema for our COLLECTION container that stores metadata about each machine
or sensor.

// Schema for a COLLECTION container
public class Sensor_Metadata {
@RowKey String sensorId; // e.g., "temp_FO1_A34C"
String location; // e.g., "Building 3, Line 2"
Date installDate;
Blob specSheet; // Store binary data like a PDF spec sheet

Finally, we might have a COLLECTION container for storing discrete alert events.
// Schema for a COLLECTION container named "alert_history"
public class Alert {

@RowKey int id;

Date timestamp;

String sensorld; // Which sensor triggered the alert
int level; // e.g., 1=Warning, 2=Critical
String detail; // Description of the alert

This multi-container, denormalized design is the blueprint for a scalable loT application in GridDB.

13

Sensor_Metadata

@RowKey string
string
Date

Blob

2.5 Summary

Effective schema design in GridDB requires a shift in thinking away from the relational model. By
embracing a JOIN-less, denormalized approach and leveraging the "one container per sensor"

sensorld

location

installDate

specSheet

@RowKey int

Date

string

int

string

sensor_F01 (TIME_SERIES)

@RowKey Date

double

string

alert_history

timestamp

sensorld

level

detail

timestamp

val

status

pattern, you can build a data architecture that is optimized for the extreme write and query loads of a
large-scale loT system.
The key takeaways are:

14

Practice Benefit

One TIME_SERIES container per sensor Enables massive write parallelism and fast,
isolated queries.

Use COLLECTION containers for metadata [Cleanly separates high-velocity data from
slow-changing attributes.

Denormalize to avoid JOINs Designs for scalability by favoring multiple
simple lookups over one complex operation.
Use clear naming conventions Makes managing thousands of containers

programmatically feasible.

In the next chapter, we'll move from theory to practice. You'll learn how to install GridDB, connect to it

with a client, and perform your first create, read, update, and delete (CRUD) operations.

15

Chapter 3. Working with Time-Series Data

With a solid data model in place, it's time to focus on the heart of any IoT application: the time-series
data itself. GridDB isn't just a place to store timestamped records; it's an engine built to manage and
analyze that data over its entire lifecycle. This involves more than just writing and reading—it includes
handling data retention, performing complex time-based queries, and running real-time analytics.

In this chapter, we'll explore the specialized features that GridDB provides for working with
TIME_SERIES containers. You'll learn how to automatically manage data storage with expiry policies
and how to leverage GridDB's powerful time-series functions to sample, aggregate, and analyze your
data efficiently.

3.1 Managing the Data Lifecycle: Partitioning and Expiry

In many loT systems, the value of a data point diminishes over time. A temperature reading from 10
seconds ago is critical, but a reading from two years ago is often less relevant. Storing every data
point forever is expensive and degrades query performance.

GridDB solves this problem by integrating data expiry directly with its partitioning feature. Instead of
deleting row-by-row, GridDB drops an entire partition (a chunk of data) once it's considered old. This
is an essential feature for managing storage and maintaining high performance.

To use expiry, you must also define a partitioning rule. This is done via SQL when you first create your
container:

SQL

CREATE TABLE IF NOT EXISTS temp_sensors (
timestamp TIMESTAMP NOT NULL PRIMARY KEY,
value FLOAT

)

WITH (
expiration_type = 'PARTITION',
expiration_time = 10,
expiration_time_unit = 'DAY'

)
PARTITION BY RANGE (timestamp)

EVERY (1, DAY);

Let's break down the new settings in this CREATE TABLE command:

16

e PARTITION BY RANGE (timestamp) EVERY (1, DAY) This command tells GridDB to
create a new data partition for each day's worth of data (e.g., "Jan 1", "Jan 2", "Jan 3"). This is
the "partitioning rule."

e WITH (...) This block defines the "expiry rule" that works on those partitions.

o

How it works:

expiration_time = 10 & expiration_time_unit = 'DAY': This sets the
retention period. We want to keep data for 10 days.

expiration_type = 'PARTITION': Thisis the key. It tells GridDB to expire the
entire partition at once, not individual rows.

With this setup, the entire "Jan 1" partition will only be dropped from the database when all of its data
(including the data from 23:59 on Jan 1) is older than 10 days. This means on "Jan 12", the "Jan 1"
partition becomes eligible for deletion.

This simple SQL setting offloads a massive operational burden. You no longer need complex cleanup
scripts. GridDB handles the data pruning for you, ensuring your containers remain lean and

performant.

3.2 Querying with Time: SQL Time-Series Functions

Standard SQL

can be clumsy for time-series queries. Answering "What was the average temperature

every 5 minutes?" often requires complex window functions.

GridDB's SQL

interface extends familiar syntax with powerful functions designed specifically for

time-series analysis. These allow you to express complex time-based operations in a clear, concise,
and standard way.

Downsampling with GROUP BY RANGE

One of the most common loT tasks is downsampling—reducing high-frequency data to analyze or
visualize it. Instead of a proprietary function, GridDB uses the elegant GROUP BY RANGE clause.

Imagine a sensor reports every second, but you only need the maximum value every five minutes for
a dashboard. You can do this directly in the database:

17

SQL

-- Select the maximum temperature for every 5-minute interval
-- over the past 24 hours.

SELECT MAX(value)

FROM temp_FO1_A34C

WHERE timestamp > NOW() - 1 DAY

GROUP BY RANGE timestamp EVERY (5, MINUTE);

This single query replaces a significant amount of application-level code and is much more intuitive
than traditional SQL.

Note: Interpolation for Missing Data
Real-world sensors are unreliable. They drop connections or fail to report, leaving gaps in your
timeline. GridDB handles this by adding a FILL clause to the GROUP BY RANGE query.

You no longer need a separate TIME_INTERPOLATED function. You can perform linear interpolation
to fill gaps and create a continuous data set, which is perfect for smooth graphs or feeding ML
models.

sSQL

-- Get the average value every 10 seconds,

-- and fill any missing 10-second intervals using linear interpolation.
SELECT AVG(value)

FROM temp_sensor_0001

WHERE timestamp > NOW() - 1 HOUR

GROUP BY RANGE timestamp EVERY (16, SECOND)

FILL (LINEAR);

Other FILL options include NULL (fill with NULL) and PREVIOUS (carry the last known value forward).

3.3 Aggregation and Real-Time Analytics
Beyond sampling, TQL provides a full set of standard aggregation functions that work seamlessly

with time-series data. You can calculate averages, find minimums and maximums, compute standard
deviations, and more, all on the server side.

18

These functions are the building blocks of real-time monitoring and analytics. For example, you could
build a dashboard that monitors the health of all machines in a facility by running queries like these:

SQL

-- Get the average temperature across all sensors in the last 10 minutes

-- (This would be run in a loop for each sensor container by the application)
SELECT AVG(value) FROM temp_F01_A34C WHERE timestamp > NOW() - 10 MINUTE;

-- Find the highest vibration reading from a specific machine today
SELECT MAX(value) FROM vibration_F02_B81A WHERE timestamp > NOW() - 1 DAY;

-- Calculate the standard deviation of pressure to detect instability
SELECT STDDEV(value) FROM pressure_F@1_A35B WHERE timestamp > NOW() - 1 HOUR;

By performing these calculations inside the database, you minimize the amount of data that needs to
be transferred over the network. Instead of pulling millions of raw data points into your application to
compute an average, you send a simple query and get back a single number. This is a fundamental
principle of scalable loT architecture.

3.4 Optimizing for Bulk Operations

When interacting with GridDB, especially during high-throughput ingestion or large data exports, it's
always more efficient to work with data in batches. Sending one row at a time incurs significant
network overhead.

All GridDB client libraries provide methods for bulk operations. For example, the Java client has:
e multiPut(): Puts a list of rows into a container in a single call. This is essential for achieving
high ingestion rates from your sensor data collectors.
e multiGet(): Retrieves multiple rows based on a list of row keys.

Always favor these batch operations over single-row operations in a loop. A simple change from put()
in a for loop to a single multiPut() call can improve your write performance by an order of magnitude.

19

3.5 Summary

Working effectively with time-series data goes beyond simple storage. A robust loT platform requires

tools to manage the data lifecycle, perform complex time-based queries, and run analytics in real

time. GridDB provides these capabilities as first-class features of the database.

Key takeaways from this chapter include:

Feature

Benefit

Data Expiry Policies

Automatically manages storage, saving cost
and maintaining performance.

TIME_SAMPLING Function

Simplifies downsampling and data resolution
reduction directly in a query.

Server-Side Aggregations

Minimizes data transfer and enables efficient,
real-time analytics.

Bulk Operations (multiPut)

Maximizes ingestion throughput by reducing
network overhead.

By mastering these features, you can build applications that are not only scalable and performant but
also capable of extracting meaningful insights from the relentless flow of loT data.

In the next chapter, we will get our hands dirty with code. We'll walk through detailed examples in
Java and Python, showing you how to connect to GridDB and perform the fundamental write and

read operations that form the foundation of any loT application.

20

Chapter 4. Writing Data to GridDB

With your schema designed and your time-series management strategy in place, you're ready for the

most fundamental operation in any loT system: writing data. For most loT applications, the write
throughput—often called the ingestion rate—is the single most critical performance metric. The

system must be able to absorb a relentless stream of data from potentially millions of devices without

faltering.

In this chapter, we'll get hands-on with code. You will learn the primary methods for writing data to
GridDB, focusing first on the high-performance native Java client. We will then explore how to
achieve the same results using the Python client, the JDBC driver, and the language-agnostic Web
API.

4.1 The Core Pattern: Writing with the Java Client

The native Java client offers the highest performance and the most features. It's the recommended
choice for building the core data ingestion services in a demanding production environment.

Connecting to the GridDB Cluster

The first step in any application is to establish a connection to the GridDB cluster. This is done by
creating a GridStore instance, configured with the properties of your cluster.

Java

import com.toshiba.mwcloud.gs.GridStore;

import com.toshiba.mwcloud.gs.GridStoreFactory;
import java.util.Properties;

// Set up the connection properties

Properties props = new Properties();

props.setProperty("notificationMember"”, "127.0.0.1:10001"); // Address of a cluster
node

props.setProperty("clusterName", "myCluster");

props.setProperty("user", "admin");

props.setProperty("password", "admin");

// Get an instance of the GridStore
GridStore store = GridStoreFactory.getInstance().getGridStore(props);

21

Defining a Schema with a Java Class

As we saw in Chapter 2, you can map a Java class directly to a GridDB container schema. This
object-oriented approach is intuitive and type-safe. Let's use our SensorReading class again.

Java
// This class defines the schema for our container
public class SensorReading {

@RowKey Date timestamp;

double value;

String status;

Putting a Single Row

To write data, you first get a reference to a container and then put an object into it. The put operation
is transactional. You must call commit() to save the changes to the database.

Java

// Get a reference to a TIME_SERIES container.
TimeSeries<SensorReading> container = store.getTimeSeries("temp_F01_A34C",
SensorReading.class);

// Create an instance of our data object

SensorReading reading = new SensorReading();
reading.timestamp = new Date(); // Use the current time
reading.value = 21.5;

reading.status = "NORMAL";

// Put the row into the container
container.put(reading);

// IMPORTANT: Commit the transaction to persist the data
container.commit();

22

Note: Auto-Commit

The container object has an setAutoCommit(true) method. While this can be convenient for simple
scripts, it is not recommended for high-performance applications. Explicitly controlling your
transaction boundaries with commit() gives you finer control and is essential for batch operations.

4.2 The Key to Performance: Batch Inserts with multiPut()

Putting one row at a time is inefficient for high-frequency data streams. Each put and commit cycle
involves network communication and transaction overhead. To achieve high ingestion rates, you must
batch your writes.

The multiPut() method allows you to insert a list of rows into a container in a single, highly optimized
operation. This dramatically reduces network overhead and is the standard practice for production
data collectors.

Java

// Assume 'container' is the same TimeSeries object from the previous example

// Create a list to hold multiple readings
List<SensorReading> readings = new ArraylList<>();

// Populate the list with new data points
// In a real application, this data would come from a message queue or sensor stream
for (int i = 0; i < 1000; i++) {
SensorReading reading = new SensorReading();
reading.timestamp = new Date(System.currentTimeMillis() + i); // Ensure unique
timestamps
reading.value = 20.0 + (Math.random() * 5); // Random value between 20 and 25
reading.status = "NORMAL";
readings.add(reading) ;

// Put all 1,000 rows in a single network call
container.multiPut(readings);

// Commit the transaction for the entire batch
container.commit();

23

4.3 Alternative Methods for Writing Data

While the Java client is ideal for high-performance services, GridDB provides several other interfaces
to suit different languages, tools, and development styles.

Writing with Python

The Python client is excellent for data science, machine learning tasks, and rapid prototyping. The
syntax is clean and idiomatic.

Python

import griddb_python as griddb
from datetime import datetime

Connect to the store

factory = griddb.StoreFactory.get_instance()

gridstore = factory.get_store(
notification_member="127.06.06.1:10001"
cluster_name="myCluster",
username="admin",
password="admin"

Define the container schema and create the container
con_info = griddb.ContainerInfo(
name="temp_FO1_A34C",
column_info_list=[
["timestamp", griddb.Type.TIMESTAMP],
["value", griddb.Type.DOUBLE],
["status", griddb.Type.STRING]
1,
type=griddb.ContainerType.TIME_SERIES,
row_key=True

)

container = gridstore.put_container(con_info)
Put a single row. The list must match the column order.

The Python client is auto-committed by default.
container.put([datetime.now(), 20.8, "NORMAL"])

24

Writing with the JDBC Driver

If your organization has existing infrastructure or expertise built around SQL, you can use GridDB's
JDBC driver. This allows you to interact with GridDB using standard SQL INSERT statements.

Java

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;

// Set up the JDBC connection URL

String jdbcUrl = "jdbc:gs://127.0.0.1:20001/myCluster/public";
Properties props = new Properties();

props.setProperty("user", "admin");
props.setProperty("password", "admin");

// Establish the connection

Connection con = DriverManager.getConnection(jdbcUrl, props);

Statement stmt = con.createStatement();

// Create a table if it doesn't already exist

stmt.executeUpdate("CREATE TABLE IF NOT EXISTS SensorlLog (timestamp TIMESTAMP PRIMARY
KEY, value DOUBLE, status STRING)");

// Insert a row using a standard SQL statement
stmt.executeUpdate("INSERT INTO SensorLog VALUES (NOW(), 22.1, 'NORMAL')");

con.close();

Writing with the Web API

For ultimate flexibility, GridDB provides a RESTful Web API. This allows any language or tool capable
of making HTTP requests to write data, making it a perfect fit for microservices written in languages
like Go, Rust, or Node.js.

Here is an example using curl to insert a row into our temp_FO01_A34C container.

25

Shell
The --data payload is a JSON array of rows.

Each inner array represents a row, with values in the correct column order.
curl --location --request PUT \
'http://127.0.0.1:8080/griddb/v2/myCluster/dbs/public/containers/temp_FO1_A34C/rows'’

--header 'Content-Type: application/json' \
--header 'Authorization: Basic YWRtaW46YWRtaW4=' \
--data '[["2025-08-12T15:16:00.000Z", 23.3, "NORMAL"]]

26

4.4 Summary

GridDB offers multiple pathways for writing data, allowing you to choose the tool that best fits the

task. While each method has its place, the core principles of high-speed ingestion remain the same:

batch your writes and use the right tool for the job.

Method Technology Primary Use Case

Native API Java / C High-performance ingestion
services, maximum control.

Python API Python Data science, scripting, and
rapid application development.

JDBC Driver SQL Integration with existing Bl
tools and SQL-based
applications.

Web API REST/HTTP Language-agnostic access,
microservices architecture.

Now that you know how to get data into GridDB, the next step is to get it out. In the next chapter, we
will explore the powerful query capabilities of GridDB, from simple lookups to complex aggregations

and time-series analysis.

27

Chapter 5. Querying Data from GridDB

Now that you have data flowing into your GridDB cluster, the next step is to retrieve it. Whether you're
powering a real-time dashboard, running an analytical job, or triggering an alert, efficient querying is
the key to unlocking the value of your loT data. GridDB provides a flexible query model that combines
the power of a SQL-like language with the performance of a native NoSQL API.

In this chapter, you will learn the primary methods for querying data. We'll start with GridDB's native
TQL using the Java client, then explore how to perform the same operations using Python, the JDBC
driver, and the Web API.

5.1 The Primary Method: Querying with SQL

For most applications, the most direct and standard-compliant way to query GridDB is by using its
JDBC Driver. This approach allows any Java application to connect and run standard SQL, just as it
would with any other SQL database like PostgreSQL or MySQL.

This requires the GridDB JDBC driver (gridstore-jdbc. jar) to be in your application's classpath
and uses the standard java.sql. * package.

Fetching a Set of Rows with JDBC

Let's start with our common task: retrieving all sensor readings from the last hour that exceed a
certain threshold. With JDBC, you use a Connection and Statement to execute a full SQL query,
then iterate over the ResultSet.

Java

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

// (Inside your application method)

String containerName = "temp_F01_A34C";

String jdbcUrl =
"jdbc:gs://127.6.0.1:20001/myCluster/public?user=admin&password=admin";

28

// Create a standard SQL query.
String sql = String.format(

"SELECT * FROM %s WHERE status = 'CRITICAL' AND timestamp > NOW() - 1 HOUR",

containerName

)

// Use a try-with-resources block to manage the connection
try (Connection conn = DriverManager.getConnection(jdbcUrl);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {

// Iterate through the results just like any other database

while (rs.next()) {
// Manually map columns from the ResultSet

java.sql.Timestamp ts = rs.getTimestamp("timestamp");

double val = rs.getDouble("value");
String status = rs.getString("status");

// Process the data (e.g., send an alert)
System.out.println(

"Alert! High reading at " + ts + ": " + val

IE
}
} catch (Exception e) {
e.printStackTrace();

This pattern is the foundation of all standard database operations. The SQL query is executed on the

server, and only the matching rows are returned to the client.

Server-Side Aggregations

As we discussed in Chapter 3, performing aggregations in the database is critical for performance.

With JDBC, this is simply another SQL query.

Instead of pulling thousands of raw data points to your application to calculate an average, you ask

GridDB to do it for you.

29

Java

// Assume 'jdbcUrl' and 'containerName' are defined
// Create an aggregation query using a SQL alias 'avg_val' for clarity
String sql = String.format(
"SELECT AVG(value) AS avg_val FROM %s WHERE timestamp > NOW() - 1 DAY",
containerName
)
try (Connection conn = DriverManager.getConnection(jdbcUrl);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql)) {

// An aggregation query almost always returns exactly one row
if (rs.next()) {
// Fetch the result by its alias or column index (1)
double averageValue = rs.getDouble("avg_val");
System.out.println("Average value over the last 24 hours: " + averageValue);

}
} catch (Exception e) {
e.printStackTrace();

This approach dramatically reduces network traffic and client-side processing, making it ideal for
powering dashboards and analytical reports.

5.2 Querying from Python: The Data Scientist's Toolkit

The GridDB Python client provides the same powerful TQL capabilities but with an interface tailored
for data analysis and scripting.

Basic Queries in Python

The query process is very similar to Java: you get a container, run a query, and iterate through the
results.

30

Python
import griddb_python as griddb

... (connect to gridstore as shown in Chapter 4)

try:
Get the container
container = gridstore.get_container("temp_F01_A34C")
if container is None:
print("Container not found")
exit()

Run a TQL query

query = container.query("SELECT * WHERE value > 25.0 ORDER BY timestamp DESC LIMIT
10")
rs = query.fetch()

Iterate through the results
while rs.has_next():
The result 'row' is a list matching the column order
row = rs.next()
print(f"Timestamp: {row[@]}, Value: {row[1]}, Status: {row[2]}")

except griddb.GSException as e:
print(f"An error occurred: {e}")

The Power of Pandas DataFrames

One of the standout features of the Python client is its seamless integration with the Pandas library,
the de facto standard for data manipulation in Python. With a single command, you can fetch the
entire result set of a query directly into a Pandas DataFrame.

Python

Assume 'container' and 'query' are the same as the previous example
df = rs.fetch_rows() #fetch_rows fetches a dataframe
Now you can use all the power of Pandas

print("Query results as a DataFrame:")
print(df.head())

31

print("\nBasic statistics:")
print(df['value'].describe())

This feature makes GridDB an excellent backend for data science, machine learning, and visualization
workloads.

Python And Apache Arrow

As of version 5.8.0, the Python client now utilizes the native Java API, enabling the retrieval of data
rows as Apache Arrow objects. Apache Arrow is highly beneficial due to its support for "zero-copy
reads and fast data access and interchange without serialization overhead between these languages
and systems" (https://en.wikipedia.org/wiki/Apache_Arrow). This capability allows for seamless and
direct data transfer between languages like Python and Node.js, for instance, without any performance
drawbacks.

Here’s an example:

Python

import pyarrow as pa
import pandas as pd

ra = griddb.RootAllocator(sys.maxsize)

df = pd.read_csv("data.csv")

record batch returns an Apache Arrow data obj
rb = pa.record_batch(df)

col = gridstore.get_container("device")
col.multi_put(rb, ra)

g = col.query("select *")
q.set_fetch_options(root_allocator=ra)
rs = q.fetch()

rb = rs.next_record_batch()

can convert directly to dataframe
df2 = rb.to_pandas()

32

https://en.wikipedia.org/wiki/Apache_Arrow

5.3 Alternative Query Interfaces

For different architectures and use cases, GridDB provides other ways to access your data.

Using SQL with the JDBC Driver

If you're integrating with existing business intelligence (BI) tools or have an application already built
on SQL, the JDBC driver is a perfect choice. It allows you to run standard SQL SELECT statements
against your containers (which appear as tables).

Java

// Assume 'con' is a java.sql.Connection object from Chapter 4

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT * FROM SensorLog WHERE value > 22.0 AND status = 'NORMAL'"

)'.

while (rs.next()) {
Timestamp ts = rs.getTimestamp("timestamp");
double val = rs.getDouble("value");
String status = rs.getString("status");
System.out.println("time=" + ts + ", value=" + val + ", status=" + status);

}
rs.close();
stmt.close();

Using the Web API
The RESTful Web API provides a language-agnostic way to query data, suitable for microservices or

web frontends. You simply send your TQL query as part of a JSON payload.
Execute a TQL query via a curl POST request

33

Java

curl --location --request POST \
"http://127.0.0.1:8080/griddb/v2/myCluster/dbs/public/tql" \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic YWRtaW46YWRtaW4="' \
--data '[{
“container": "temp_FO1_A34C",
“stmt": "SELECT * WHERE value > 25.0 LIMIT 10"

HY

The server will respond with a JSON object containing the query results.

34

5.4 Summary

GridDB offers a rich set of query capabilities designed to fit multiple architectural patterns. Whether
you need the raw performance of the native Java client, the analytical power of the Python
integration, or the compatibility of SQL, you have the right tool for the job.

Query Method Language/Tech Strengths

TQL API LJava / Python High performance,
schema-aware, full access to
time-series functions.

JDBC Driver Java / SQL Familiar SQL syntax,
compatibility with existing Bl
and reporting tools.

Pandas Integration Python |deal for data science, machine
learning, and advanced
analytics.

Web API REST/HTTP Language-agnostic, perfect

for microservices and web
applications.

Now that you can write and read data, you're equipped to build the core of a complete loT

application. In the next chapter, we'll look at a key architectural pattern: integrating GridDB with a

streaming platform like Apache Kafka to build a robust, real-time data pipeline.

35

Chapter 6. Performance Tuning and Optimization
Strategies

As loT systems scale, the sheer volume and velocity of data can push any database to its limits. While
GridDB is architected for high performance, achieving maximum throughput requires developers to
adopt best practices that align with the database's design principles. The most significant factor in the
performance of a distributed database is not always CPU or memory, but rather the time spent
communicating over the network.

This chapter focuses on fundamental tuning strategies for GridDB, centering on the single most
important principle for optimizing performance: minimizing network latency. We will explore how
batching operations for both writing and reading data can dramatically increase the efficiency and
speed of your application.

6.1 The Primary Bottleneck: Network Latency

In a distributed system, your application (the client) communicates with the GridDB server over a
network. Every command you send—whether it's to insert a single row or query a piece of data—incurs
a small delay. This delay, known as network latency, is the time it takes for your request to travel to the
server and for the response to travel back.

While the latency for a single operation might be milliseconds, in an loT application processing
thousands of data points per second, these milliseconds add up catastrophically. The primary goal of
performance tuning in this context is to reduce the total number of round trips between the client and
the server.

6.2 Optimizing Write Operations: The Power of multi_put()

A common but inefficient pattern for writing data is to insert records one at a time within a loop.

The Inefficient Approach: Row-by-Row put()

Consider an application that needs to insert 1,000 new sensor readings. A naive approach would be to
loop through the readings and call the put() function for each one.

Python
ANTI-PATTERN: Do not do this in performance-critical code!
for i in range(16060):
row = [i, "sensor_reading", 35.5 + i]
container.put(row) # A separate network call is made for each row

36

While functionally correct, this code is extremely inefficient. It makes 1,000 separate network round
trips. The majority of the execution time is spent waiting for the network, not on the database's
processing. It's analogous to going to the supermarket 1,000 times to buy 1,000 individual items.

The Optimized Approach: Batching with multi_put()

The correct and highly optimized method is to batch these insertions into a single operation using the
multi_put() function. This involves preparing a list of all the rows you want to insert and then sending
them to GridDB in one command.

Python
BEST PRACTICE: Batch writes using multi_put()
row_list = []
for i in range(1000):
row = [i, "sensor_reading", 35.5 + i]
row_list.append(row)

container.multi_put(row_list) # All 1000 rows are sent in a single
network call

This approach reduces 1,000 network round trips to just one. The performance improvement is not
incremental; it's often a difference of one or more orders of magnitude. The database can ingest the
bulk data far more efficiently, and the time spent on network latency becomes negligible.

6.3 Optimizing Read Operations: Querying in Bulk

The same principle of batching applies to reading data. Attempting to fetch multiple specific records
by querying them one by one in a loop is a significant performance anti-pattern.

The Inefficient Approach: Single-Key Queries in a Loop

Imagine you need to retrieve the records for 100 specific device IDs. Looping and executing a query
for each ID will once again result in excessive network calls.

Python
ANTI-PATTERN: Do not query one key at a time in a loop!
results = []
for i in range(160):
query = container.query(f"SELECT * WHERE device_id = {i}")
rows = query.fetch()
results.extend(rows) # A separate network call for each device ID

37

The Optimized Approach: MULTI_GET and IN Clauses

To optimize this, you should retrieve all the desired records in a single database query. GridDB provides
two effective ways to do this:

1. Using MULTI_GET: This function is specifically designed to fetch multiple rows based on a list of
row keys, making it ideal for targeted lookups.

2. Using a SQL IN Clause: For more complex queries, you can construct a single SQL query that
uses the IN operator to specify all the keys or values you want to retrieve.

Python
BEST PRACTICE: Use a single query to fetch multiple records
query_string = "SELECT * WHERE device_id IN (@, 1, 2, ..., 99)"

query = container.query(query_string) # Only one network call is made
rows = query.fetch()

This method consolidates 100 potential network calls into a single, efficient operation, allowing the
database to perform a coordinated lookup and return all the results in one response.

In summary, the core principle of GridDB performance tuning is simple yet profound: always prefer
batch operations over iterative, single-row operations. By batching your writes with multi_put() and
your reads with MULTI_GET or IN clauses, you directly address the primary bottleneck of network
latency, ensuring your application remains fast, efficient, and scalable.

38

Chapter 7. Real-Time Streaming with Apache Kafka

In a modern IoT architecture, the database rarely lives in isolation. It's part of a larger ecosystem of
services that produce, transport, and consume data. For handling the massive, continuous flow of
data from devices to your database, the industry standard is a streaming platform, and the
undisputed leader in this space is Apache Kafka.

Think of Kafka as the central nervous system for your data. It's a highly scalable, durable, and fast
message bus designed to handle real-time data feeds. By placing Kafka between your loT devices
and GridDB, you create a robust, decoupled architecture that can handle unpredictable data bursts
and scale to millions of devices. In this chapter, you'll learn how to integrate GridDB into a
Kafka-based data pipeline using the GridDB Kafka Connectors.

7.1 The Role of Kafka in an loT Architecture

At its core, Apache Kafka allows different systems to communicate without being directly connected
to each other.

e Producers (like your loT data collection service) publish streams of data.

e This data is organized into Topics (e.g., temperature_readings, gps_locations).

e Consumers (like the GridDB Kafka Connector) subscribe to these topics to receive the data in
real time.

This decoupling is the key benefit. If GridDB needs to go down for maintenance, or if there's a
sudden spike in traffic from your devices, Kafka acts as a massive, persistent buffer. It holds the data
safely until GridDB is ready to consume it, ensuring no data is lost.

7.2 The GridDB Kafka Connect Framework

To make integration seamless, GridDB provides connectors for Kafka Connect, a framework for
building and running reusable connectors that move data between Kafka and other systems. You
don't need to write custom consumer or producer code; you simply configure the pre-built GridDB
connectors.

There are two primary connectors:
e The Sink Connector: This connector "sinks" data from Kafka into GridDB. It subscribes to one

or more Kafka topics and writes the messages it receives into GridDB containers. This is the
primary method for data ingestion.

39

e The Source Connector: This connector "sources" data from GridDB into Kafka. It polls
containers for new or updated rows and publishes them to a Kafka topic. This is ideal for
feeding data from GridDB to other downstream systems, like a real-time analytics engine or an
alerting service.

7.3 Ingesting Data: The GridDB Sink Connector

Let's walk through the most common use case: streaming sensor data from a Kafka topic into a
GridDB container.

Setup and Configuration

First, you need a running Kafka cluster and the GridDB Kafka Connector JAR file placed in the
appropriate Kafka plugin directory. The connector is configured with a simple properties file. Here’s
an example configuration to stream data from a topic named iot_telemetry into GridDB.

Shell

A unique name for this connector instance
name=griddb-iot-sink

The connector class for the GridDB Sink
connector.class=com.github.griddb.kafka.connect.GriddbSinkConnector

The Kafka topic(s) to consume messages from
topics=iot_telemetry

--- GridDB Connection Properties ---
cluster.name=myCluster
notification.member=127.0.0.1:10001
user=admin

password=admin

--- Data Transformation ---

Use Kafka Connect's built-in transform to convert a string field to a timestamp
transforms=TimestampConverter
transforms.TimestampConverter.type=org.apache.kafka.connect.transforms.TimestampConver
terS$Value

transforms.TimestampConverter.field=ts
transforms.TimestampConverter.format=yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
transforms.TimestampConverter.target.type=Timestamp

40

Once you load this configuration into your Kafka Connect worker, it will immediately start listening for
messages on the iot_telemetry topic.

Sending Data

Now, any producer can send data to the iot_telemetry topic. For example, using Kafka's
command-line producer, you could send a simple JSON payload representing a sensor reading:

Start the Kafka console producer
kafka-console-producer.sh --topic iot_telemetry --bootstrap-server 127.0.0.1:9092

Paste the following JSON message and press Enter
> {"ts"; "2025-08-12T15:30:00.123Z2", "sensorld": "temp_FO1_A34C", "value": 22.7, "status":
"NORMAL"}

The Sink Connector receives this message. It uses the topic name (iot_telemetry) or a field within the
message (e.g., sensorld) to determine the target container name in GridDB. It maps the JSON fields
to the columns in the container and performs the insert. The TimestampConverter transform we
configured automatically converts the ts string field into a proper TIMESTAMP type for the row key.

7.4 Exporting Data: The GridDB Source Connector

To move data in the other direction—from GridDB to Kafka—you use the Source Connector. This is
useful for feeding a stream of database changes to other applications.

The configuration is similarly straightforward. This example polls the alert_history container every 10
seconds for new rows.

Shell

A unique name for this connector instance
name=griddb-alert-source

The connector class for the GridDB Source
connector.class=com.github.griddb.kafka.connect.GriddbSourceConnector

41

The container to read data from
container.name=alert_history

The Kafka topic to publish data to
topic.name=alerts

--- GridDB Connection Properties ---
cluster.name=myCluster
notification.member=127.0.0.1:10001
user=admin

password=admin

--- Polling Configuration ---

Check for new rows every 10 seconds
poll.interval.ms=10000

Use the timestamp column to find new rows
mode=timestamp
timestamp.column.name=timestamp

With this connector running, whenever a new row is added to the alert_history container in GridDB,
the Source Connector will detect it on its next poll, convert it to a JSON message, and publish it to
the alerts topic in Kafka. From there, another service (like a Slack notifier or an email gateway) can
consume the message and take action.

7.5 Summary

Integrating GridDB with Apache Kafka creates a powerful, scalable, and resilient architecture for
modern loT applications. Kafka acts as the data backbone, decoupling your devices from your
database and enabling robust, event-driven workflows.
e Use the Sink Connector to stream data from Kafka into GridDB for durable storage.
e Use the Source Connector to stream data from GridDB into Kafka to feed downstream
analytics, alerting, or machine learning systems.

By leveraging the Kafka Connect framework, you can build these complex data pipelines with simple

configuration, allowing you to focus on your application logic instead of the plumbing.
In the next chapter, we'll explore another key integration point in the loT ecosystem: connecting
GridDB with cloud platforms like Microsoft Azure to build globally distributed applications.

42

Chapter 8. Building a Secure API with Flask

Your loT data is valuable. Whether it's powering an internal dashboard, a mobile application for
customers, or a machine learning pipeline, you need a secure and reliable way to expose it. The most
common way to do this is by building a RESTful API, and Python's lightweight web framework, Flask,
is an excellent tool for the job.

However, simply exposing data isn't enough; you must protect it. In this chapter, we'll go beyond basic
data retrieval and build a complete, production-ready API service. You will learn how to use GridDB
not just as a time-series database but also as the backbone for your application's security. We will
build a full authentication system using the industry-standard OAuth2 protocol, storing user
credentials and access tokens directly in GridDB containers.

8.1 The Architecture: GridDB as a Unified Data and Identity Store

By combining Flask with GridDB, we can create a powerful and elegant architecture.
e Flask provides the web server and routing, handling incoming HTTP requests and sending back
JSON responses.
e GridDB serves two critical roles:
1. It's the data store for our loT time-series data (e.g., temp_FO1_A34C).
2. It's the identity store for our API, holding user credentials and security tokens.
This unified approach simplifies your architecture. You don't need a separate database for your
application's users; GridDB can manage it all.

8.2 Project Setup and Dependencies

To build our secure API, we'll need a few key Python libraries:

Flask: The core web framework.

griddb_python: The GridDB client library.

Authlib: A powerful library for implementing OAuth2 clients and providers.
berypt: A library for securely hashing passwords.

You can install them all with pip:

pip install Flask Authlib berypt griddb_python

43

8.3 Schema Design for Authentication

Before we write any API code, we need to design the containers to hold our security data. We'll create
two COLLECTION containers for this purpose.

First, a container to store user information. It's critical that we never store passwords in plain text.
We will store a securely hashed version of the password.

Python
Schema for the "users" container
users_container_info = griddb.ContainerInfo(
name="users",
column_info_list=|
"username", griddb.Type.STRING], # RowKey
["password_hash", griddb.Type.BLOB] # Store the bcrypt hash as bytes
IF
type=griddb.ContainerType.COLLECTION,
row_key=True

)

gridstore.put_container(users_container_info)

Second, a container to store the OAuth2 access tokens that we issue to users after
they log in.
Schema for the "tokens" container
tokens_container_info = griddb.ContainerInfo(
name="tokens",
column_info_list=|
["access_token", griddb.Type.STRING], # RowKey
"username", griddb.Type.STRING],
["expires_at", griddb.Type.TIMESTAMP],
["issued_at", griddb.Type.TIMESTAMP]
IF
type=griddb.ContainerType.COLLECTION,
row_key=True

)

gridstore.put_container(tokens_container_info)

44

8.4 Implementing the Authentication Flow

Our API will have two main authentication endpoints: one for creating a new user and one for logging
in and issuing a token.

User Registration

This endpoint will accept a new username and password, hash the password using bcrypt, and store
the new user in our users container.

Python

import bcrypt
from flask import request, jsonify

@app.route('/register', methods=['POST'])
def register():
username = request.form.get('username')

password = request.form.get('password")
if not username or not password:
return jsonify({"error": "Username and password are required"}), 4600

Hash the password for secure storage
hashed_password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt())

try:
users_container = gridstore.get_container("users")
The BLOB type expects a bytearray
users_container.put([username, bytearray(hashed_password)])
return jsonify({"message": "User created successfully"}), 201
except Exception as e:
return jsonify({"error": str(e)}), 500

Token Issuance (Login)

This is the core of the OAuth2 flow. When a user provides their correct username and password, our
server will generate a temporary, secure Bearer Token and return it to them. The user will then
include this token in the Authorization header of all future requests to prove their identity. The Authlib
library handles the complexity of generating these tokens.

We configure Authlib to use our GridDB containers to validate user credentials and save the issued
tokens.

45

Note: The Role of Authlib

Implementing the full OAuth2 specification is complex and error-prone. Libraries like Authlib are
essential because they handle the protocol's intricacies, such as token generation, expiry, and
validation, allowing you to focus on your application logic. We simply need to provide the functions
that let Authlib talk to our GridDB backend.

8.5 Protecting APl Endpoints

With the authentication flow in place, we can now protect our data endpoints. We create a
require_oauth decorator from Authlib that will automatically validate the Bearer Token on incoming

requests.

To do this, we provide Authlib with a custom token validator that knows how to look up tokens in our
GridDB tokens container.

Python
from authlib.integrations.flask_oauth2 import ResourceProtector
from authlib.oauth2.rfc6750 import BearerTokenValidator

class GridDBTokenValidator(BearerTokenValidator):
def authenticate_token(self, token_string):

Look for the token in our GridDB container

tokens_container = gridstore.get_container("tokens")

token_row = tokens_container.get(token_string)

if token_row:
Here you would check if the token is expired
return token_row # Authlib uses this object to validate the request

return None

require_oauth = ResourceProtector()
require_oauth.register_token_validator(GridDBTokenValidator())

Now, protecting an endpoint is as simple as adding a decorator:
@app.route('/api/sensor_data/<string:sensor_id>")
@require_oauth() # This line locks down the endpoint
def get_sensor_data(sensor_id):
try:
container = gridstore.get_container(sensor_id)
if not container:
return jsonify({"error": "Sensor not found"}), 404

46

Query the last 10 data points
query = container.query("SELECT * ORDER BY timestamp DESC LIMIT 10")
rs = query.fetch()

results = []
while rs.has_next():
row = rs.next()
results.append({
"timestamp": row[0].isoformat()
"value": row[1],
"status": row[2]

)

return jsonify(results)
except Exception as e:
return jsonify({"error": str(e)}), 500

If a user tries to access this endpoint without a valid token, they will receive a 401 Unauthorized error.

8.6 Summary

You have now built a complete, secure REST API using Flask and GridDB. This architecture provides a
robust foundation for any application that needs to serve IoT data. By using GridDB as both the data
and identity store, you've created a clean, unified system.
The key principles are:

e Never store plain-text passwords. Always use a strong, one-way hashing algorithm like

bcrypt.

e Use an industry-standard protocol like OAuth2 for authentication. Don't invent your own.

e Leverage libraries like Authlib to handle the complexities of security protocols.

e Protect every data endpoint that exposes sensitive information.
With these patterns, you are well-equipped to build secure, scalable, and production-ready loT
applications.

47

Chapter 9. Introduction to GridDB Cloud

In the previous chapters, we've explored the architecture and features of GridDB, focusing on
deployments you would manage yourself on-premises or on your own cloud infrastructure. This
approach offers maximum control, but it also comes with the significant responsibility of provisioning
hardware, managing operating systems, patching software, and planning for scale. For many modern
loT applications, a more agile and operationally efficient model is needed.

This chapter introduces GridDB Cloud, the fully managed database-as-a-service (DBaaS) offering. We
will explore what GridDB Cloud is, why a managed cloud database is often the superior choice for loT

projects, and how to perform fundamental interactions with it using its universal Web API. This will lay

the groundwork for building sophisticated, cloud-native data pipelines in the chapters to come.

You can sign up for GridDB Cloud for free here:
https://form.ict-toshiba.jp/download_form_griddb_cloud_freeplan_e

It is also available on Azure s Marketplace:

%2F%2Fmarketplace mlcrosoft com%2Fen- us%2Fmarketplace%2Fast%3Fsearch"/OSqulddb%ZBDa
ge%3D1&correlationld=f6801d7b-bfac-40a9-9041-60a49f002339

9.1 What is GridDB Cloud?

GridDB Cloud is a high-performance, scalable NoSQL database delivered as a fully managed service.
It is built upon the same powerful, in-memory architecture and time-series optimizations as the GridDB
platform you are already familiar with. The key difference is the service model: instead of you managing
the database, the GridDB team handles all the underlying operational work.

This includes:

Infrastructure Provisioning: No need to select and configure virtual machines or servers.
Installation and Configuration: The database cluster is deployed and configured for you
based on best practices.

e Maintenance and Patching: All software updates and security patches are applied
automatically.
Backups and Recovery: Automated backup schedules and disaster recovery plans are built-in.
Scaling and High Availability: The service can scale resources up or down to meet demand
and is architected for high availability to ensure your application remains online.

By abstracting away this operational complexity, GridDB Cloud allows your team to focus exclusively on
what matters most: building your application and deriving value from your loT data.

48

https://form.ict-toshiba.jp/download_form_griddb_cloud_freeplan_e
https://marketplace.microsoft.com/en-us/marketplace/apps?search=griddb&page=1&referer=https%3A%2F%2Fmarketplace.microsoft.com%2Fen-us%2Fmarketplace%2Fapps%3Fsearch%3Dgriddb%26page%3D1&correlationId=f6801d7b-bfac-40a9-9041-60a49f002339
https://marketplace.microsoft.com/en-us/marketplace/apps?search=griddb&page=1&referer=https%3A%2F%2Fmarketplace.microsoft.com%2Fen-us%2Fmarketplace%2Fapps%3Fsearch%3Dgriddb%26page%3D1&correlationId=f6801d7b-bfac-40a9-9041-60a49f002339
https://marketplace.microsoft.com/en-us/marketplace/apps?search=griddb&page=1&referer=https%3A%2F%2Fmarketplace.microsoft.com%2Fen-us%2Fmarketplace%2Fapps%3Fsearch%3Dgriddb%26page%3D1&correlationId=f6801d7b-bfac-40a9-9041-60a49f002339

9.2 Why Use the Cloud? On-Premises vs. Managed Service

Choosing between a self-hosted (on-premises) database and a managed service like GridDB Cloud
involves a trade-off between control and convenience.

On-Premises Deployment: This model gives you complete control over every aspect of your
environment, from the hardware specifications to the network topology. It can be advantageous
for organizations with strict data residency requirements or those with existing data centers and
a dedicated operations team. However, it carries a high operational cost in terms of staffing,
maintenance, and the "heavy lifting" required to ensure reliability and scale.

GridDB Cloud (DBaaS): This model prioritizes operational efficiency and speed. Deploying a
new cluster takes minutes, not days. Scaling to handle a surge in device connections is a simple
configuration change, not a complex hardware procurement process. This agility is critical in the
fast-moving world of 10T, where project requirements can evolve rapidly. For most new projects,
the reduction in total cost of ownership (TCO) and the ability to focus on application logic make
a managed service the clear winner.

9.3 Interacting with GridDB Cloud: The Web API

While GridDB supports various native clients and connectors, GridDB Cloud is designed around a
powerful and secure RESTful Web API. This API provides a universal, language-agnostic interface for
interacting with your database over HTTPS. Its platform independence makes it the perfect choice for
the modern, distributed architectures we see in loT, including serverless functions, web applications,
and microservices written in different languages.

Interaction with the API is straightforward:

1.

2.

Authentication: You authenticate your requests using a secure API key, which is passed in the
HTTP Authorization header.

Endpoints: The API provides logical endpoints for managing and accessing your data (e.g.,
/containers/, /rows/).

HTTP Verbs: You use standard HTTP verbs to perform actions: PUT to insert data, GET to query
data, POST to create resources, and DELETE to remove them.

The following Node.js example uses axios to demonstrate a basic operation: inserting a new row of
sensor data into a container named device-001.

JavaScript

const axios = require("axios");

// These credentials should be loaded securely from environment
variables or a secret manager

49

const GRIDDB_API_ENDPOINT =
"[https://your-cluster-endpoint.api.griddb.net](https://your-cluster-e
ndpoint.api.griddb.net)";

const GRIDDB_BASIC_AUTHENTICATION = "base64encode-of-user-pass"”;

const containerName = "device-0601";

// The row data we want to insert, matching the container schema
// Let's assume the schema is [timestamp, temperature, humidity]
const rowData = [
"2023-10-27T10:00:00Z2", // timestamp (as an ISO 8601 string)
22.5, // temperature
45.1 // humidity
1;

async function insertSensorData() {

const url =
*S{GRIDDB_API_ENDPOINT}/v2/myCluster/dbs/public/containers/${container
Name}/rows";

try {
const response = await axios.put(url,

[rowbata], // The payload must be an array of one or
more rows

headers: {
"Authorization': 'BASIC
S{GRIDDB_BASIC_AUTHENTICATION},
'Content-Type': 'application/json'

);

console.log("Successfully inserted data:", response.status);

} catch (error) {
console.error("Failed to insert data:", error.response ?
error.response.data : error.message);

}

insertSensorData();

This simple pattern of constructing a request and sending it to a secure endpoint is the fundamental
building block we will use for more advanced integrations.

9.4 A Look Ahead: The Broader GridDB Ecosystem

Interacting directly with the Web API is just the starting point. GridDB Cloud is designed to be the core
of a larger data ecosystem. In the upcoming chapters, we will explore how to connect it with other
best-in-class tools to build a complete end-to-end solution:

e Data Visualization with Grafana: We'll show you how to connect GridDB Cloud as a data
source in Grafana to build beautiful, real-time dashboards that provide instant insight into your
loT device fleet.

e Streaming Data Pipelines with Apache Kafka: We will discuss architectures that use Apache
Kafka to handle massive streams of incoming data, enabling you to perform real-time
processing and analytics before the data is persisted to GridDB.

e Simplified Management with a CLI: To streamline administrative tasks, we will introduce a
purpose-built Command Line Interface (CLI) tool that simplifies container creation, user
management, and cluster monitoring directly from your terminal.

9.5 Summary

GridDB Cloud transforms a powerful database into a flexible, scalable, and easy-to-use service,
allowing you to build robust IoT applications without the burden of infrastructure management. Its Web
API provides a simple yet powerful integration point for any application, on any platform.

Now that we understand the fundamentals of GridDB Cloud and how to communicate with it, let's
explore a powerful, real-world application: building a serverless data ingestion pipeline using Microsoft
Azure.

51

Chapter 10. Serverless Integration with Microsoft Azure
loT Hub

So far, we've focused on architectures where you manage the servers running your database and
applications. However, the cloud offers a powerful alternative: serverless computing. A serverless
approach allows you to build and run applications without thinking about servers at all. You write the
code, and the cloud platform handles the provisioning, scaling, and management of the underlying
infrastructure.

For IoT, Microsoft's Azure loT Hub is a premier managed service that provides the foundation for a
serverless architecture. It handles device connectivity, security, and messaging at a massive scale.
When you combine Azure loT Hub with a high-performance database-as-a-service like GridDB
Cloud, you can create an incredibly powerful, scalable, and cost-effective data ingestion pipeline. In
this chapter, you'll learn how to build this event-driven, serverless bridge between the cloud and your
database.

10.1 The Serverless loT Architecture

In this model, we move away from running a dedicated data ingestion service and instead use a chain
of managed cloud services that are triggered by events. The flow of data is elegant and efficient:

1. Device to loT Hub: An IoT device, securely provisioned, sends a telemetry message (e.g., a
JSON payload) to its dedicated endpoint in Azure loT Hub.

2. 1oT Hub to Event Grid: IoT Hub natively integrates with Azure Event Grid, a service that
routes events from any source to any destination. When a new message arrives at loT Hub, it
publishes an event to Event Grid.

3. Event Grid to Azure Function: We configure an Azure Function—a small, independent piece
of code—to subscribe to these events from Event Grid. When a new event arrives, Event Grid
automatically triggers our function, passing along the event data.

4. Azure Function to GridDB Cloud: The Azure Function contains the logic to parse the device
message from the event payload and write it to the appropriate container in GridDB Cloud,
typically via a secure REST API call.

This entire pipeline operates without a single virtual machine that you need to manage, patch, or
scale. If you suddenly have one million devices sending data instead of one thousand, the Azure
services and GridDB Cloud scale automatically to handle the load.

52

10.2 Device Provisioning and Security

Before a device can send data, it must be registered with 10T Hub to establish a secure identity. While
loT Hub supports several authentication methods, a common pattern for large fleets is to use
symmetric keys derived from a group enrollment key. This allows you to provision devices
programmatically without having to manage individual credentials for each one.

The following Python code shows how a device could derive its unique key and register itself with the
Azure loT Device Provisioning Service (DPS), which then registers it with loT Hub.

Python

import base64

import hmac

import hashlib

from azure.iot.device.aio import ProvisioningDeviceClient

These values would be configured on your device

PROVISIONING_HOST = "your-provisioning-host.azure-devices-provisioning.net"
ID_SCOPE = "your-id-scope"

GROUP_SYMMETRIC_KEY = "your-group-primary-key" # Never hardcode in production!
REGISTRATION_ID = "device-001" # The unique ID for this device

def derive_device_key(registration_id, group_key):
"""Derives a unique device key from the group key."""
message = registration_id.encode("utf-8")
signing_key = base64.b64decode(group_key.encode("utf-8"))
signed_hmac = hmac.HMAC(signing_key, message, hashlib.sha256)
return base64.b64encode(signed_hmac.digest())

On the device, derive the key and register
async def register_device():
device_key = derive_device_key(REGISTRATION_ID, GROUP_SYMMETRIC_KEY)

provisioning_client = ProvisioningDeviceClient.create_from_symmetric_key(
provisioning_host=PROVISIONING_HOST,
registration_id=REGISTRATION_ID,
id_scope=ID_SCOPE,
symmetric_key=device_key.decode("utf-8")

return await provisioning_client.register()

53

10.3 The Ingestion Engine: An Azure Function

The core of our serverless pipeline is the Azure Function. This function acts as the lightweight data
processor. Its sole job is to receive an event, parse it, and forward the data to GridDB Cloud.

Here is an example of an Azure Function written in Node.js. It's configured to be triggered by Azure
Event Grid.

JSON
// function.json (configuration file)
{
"bindings": [
{
“type": "eventGridTrigger",
"name": "eventGridEvent",
"direction": "in"
}
]
}
JavaScript

/I index.js (the function code)
const axios = require("axios");

/l Securely load these from environment variables
const GRIDDB_API_ENDPOINT = process.env.GRIDDB_API_ENDPOINT;
const GRIDDB_API_KEY = process.env.GRIDDB_API_KEY;

module.exports = async function (context, eventGridEvent) {
context.log("Event Grid trigger function processed an event.");
/I The actual device message is Base64 encoded in the event body
const messageBody = Buffer.from(eventGridEvent.data.body, 'base64').toString();
const telemetry = JSON.parse(messageBody);

/I The device ID is part of the event's subject
const deviceld = eventGridEvent.subject.split('/")[1];

/[The target container name could be the device ID or another field

54

const containerName = deviceld;

/I Construct the URL for the GridDB Cloud REST API
const url =
"${GRIDDB_API_ENDPOINT}/v2/myCluster/dbs/public/containers/${containerName}/rows’;

try {
/I Use axios to make a PUT request to insert the row

await axios.put(url, [
/[The payload must be an array of rows
[telemetry.timestamp, telemetry.value, telemetry.status]

] {
headers: {
'Authorization': ‘Bearer ${GRIDDB_API_KEY}', // Use a secure auth token
'Content-Type': 'application/json’
}
b;

context.log("Successfully wrote data for device: ${deviceld}");

} catch (error) {
context.log.error("Failed to write to GridDB: ${error.message});
/I Implement retry logic or send to a dead-letter queue
throw error;

}
|#

10.4 Best Practices for Serverless Integration

e Secure Your Endpoint: Never expose your GridDB Cloud API without authentication. Use a
robust method like OAuth 2.0 or an API key system, and store credentials securely in Azure Key
Vault, not in your function's code.

e Filter Upstream: If devices send telemetry you don't need to store, filter it out in the Azure
Function. This saves on database write costs and keeps your dataset clean.

¢ Implement Retries and Dead-Letter Queues: Network calls can fail. Your Azure Function
should have a retry policy (e.g., exponential backoff) for transient errors when calling the
GridDB API. For persistent failures, configure a dead-letter queue to store the failed messages
for later inspection.

55

10.5 Summary

By combining Azure IoT Hub's managed device connectivity with the event-driven power of Azure

Functions and the performance of GridDB Cloud, you can build a state-of-the-art loT data platform.

This serverless model provides immense scalability and operational efficiency, freeing you from
managing infrastructure and allowing you to focus on building features for your application.

In the next chapter, we'll dive deeper into a topic we just touched on: securing your database
endpoints. We'll explore authentication and authorization patterns to ensure your GridDB APIs are
production-ready and protected from unauthorized access

56

Chapter 11. Cloud-Native Visualization: Pairing GridDB
Cloud with Grafana Cloud

As organizations increasingly adopt cloud-native infrastructure, the need for seamless, scalable, and
fully-managed data solutions has become paramount. While self-hosting a database and visualization
platform offers granular control, it also introduces significant operational overhead. A cloud-native
approach, leveraging managed services for both data storage and visualization, abstracts away the
complexities of deployment, maintenance, and scaling, allowing engineers to focus on deriving value
from their data.

This chapter details the modern, streamlined workflow for connecting GridDB Cloud, a fully-managed
time-series Database-as-a-Service (DBaaS), with Grafana Cloud, the managed offering from the
creators of Grafana. This pairing provides a powerful, enterprise-grade solution for loT analytics with
minimal setup and maintenance.

11.1 The Cloud Advantage: Simplicity and Scalability

The primary advantage of using GridDB Cloud and Grafana Cloud in tandem is the elimination of
infrastructure management. Both platforms are designed to be provisioned and configured in minutes.
Key benefits include:

e Rapid Deployment: Launch a new GridDB cluster and a Grafana instance without provisioning
servers, configuring networks, or managing software updates.

e Elastic Scalability: Both services can scale on demand to handle fluctuating data loads, from
small-scale prototypes to massive, production-level 1oT deployments.

e Enhanced Security: Cloud providers handle security at the infrastructure level. Configuration is
simplified to managing access controls, such as IP allowlists.

e High Availability: Managed services come with built-in redundancy and uptime guarantees,
ensuring your data pipeline is resilient and reliable.

11.2 The Integration Architecture: Connecting via the Infinity Plugin

Direct communication between cloud services requires secure and standardized protocols. GridDB
Cloud exposes its powerful query capabilities through a Web API, allowing for interaction via standard
HTTP requests. To bridge this API with Grafana Cloud, we utilize a versatile third-party connector called
the Infinity plugin.

The Infinity plugin acts as a universal data source, capable of retrieving data from any JSON-based
REST API and rendering it within Grafana panels. This architecture is both simple and powerful:

Grafana Cloud <--> Infinity Plugin <--> GridDB Cloud Web API

57

The implementation workflow involves three main stages: configuration, data ingestion, and querying.

1. Initial Configuration and Security

Before the services can communicate, a security handshake is required. The first step is to configure
GridDB Cloud's firewall to accept incoming connections from Grafana Cloud. This is accomplished by
adding Grafana's published IP addresses to the IP allowlist in the GridDB Cloud portal. This critical
step ensures that only authorized Grafana instances can query your database.

2. Setting Up the Infinity Datasource

Within Grafana Cloud, the Infinity plugin must be installed and configured as a new data source. The
key configuration parameters are:

URL: The hostname of your GridDB Cloud portal (eg. https://cloud5197.griddb.com).
Authentication: Basic authentication credentials (username and password) for your GridDB
Cloud instance.

e Allowed Hosts: The GridDB Cloud hostname must be added to the plugin's list of allowed
hosts for security.

A successful setup can be verified using the "Save & Test" feature, which performs a health check to
confirm connectivity.

You can also click on the health check tab and enter in the /checkConnection endpoint to ensure
connection is possible.

3. Querying and Visualization

With the connection established, you can begin to visualize your time-series data. The Infinity plugin

allows you to construct queries directly within Grafana's panel editor. Since you are communicating with

a Web API, the query is formulated as an HTTP POST request.
The core components of the query include:

e Type: Set to JSON.

e Parser: Set to Backend.

e Request Body (JSON): This is where you define your query using either GridDB's SQL
syntax or its APl-based query format.

For example, to retrieve temperature and humidity readings from a sensor container, you could use a
SQL query in the request body:

58

JSON

"queries": [
{
"query": "SELECT timestamp, temperature, humidity FROM sensors
LIMIT 10600"

}

This request is sent from Grafana Cloud to the GridDB Cloud API, which executes the SQL query and
returns the results as a JSON object. The Infinity plugin then parses this response and transforms it into
a time-series format that Grafana can plot on a graph. To properly parse the HTTP Response, you must
set the parsing option and result field as ‘results’ if conducting a SQL query. You can then also set the
columns based on index based on your structure.

More advanced SQL features, such as GROUP BY RANGE for data aggregation, are also fully
supported, enabling sophisticated on-the-fly analysis directly from your dashboard. This powerful
cloud-native integration provides a robust foundation for building modern, scalable loT applications.
More can be learned about this process directly from the GridDB developers’ website:
https://griddb.net/en/blog/pairing-griddb-cloud-with-grafana-cloud/

59

https://griddb.net/en/blog/pairing-griddb-cloud-with-grafana-cloud/

Chapter 12: Streamlining Cloud Management with the
GridDB Cloud CLI

In the lifecycle of an loT application, developers and administrators interact with the database in various
ways. While a graphical web interface is invaluable for visual exploration and initial setup, the demands
of modern software development—automation, scripting, and operational efficiency—often call for a
more direct and programmatic method of control. For these scenarios, a Command-Line Interface (CLI)
is the quintessential tool.

This chapter introduces the GridDB Cloud CLI, a powerful yet straightforward utility designed to
simplify and accelerate interactions with your GridDB Cloud instance. We will explore its purpose,
setup, and core functionalities, demonstrating how it serves as a vital bridge between your development
environment and your cloud database, enabling automation and enhancing productivity.

12.1 The "Why" of a Command-Line Interface

The GridDB Cloud portal provides a comprehensive web-based user interface for managing databases,
containers, and security settings. However, many essential developer and operations (DevOps)
workflows are performed from the command line. A CLI provides several distinct advantages:

e Speed and Efficiency: For experienced users, executing a command is often much faster than
navigating through multiple web pages and menus.

e Scriptability: CLI commands can be easily integrated into shell scripts (e.g., Bash) to automate
repetitive tasks, such as nightly data exports, health checks, or routine maintenance.

e Automation: A CLI is the cornerstone of CI/CD (Continuous Integration/Continuous
Deployment) pipelines. It allows automated systems to perform database operations, like
provisioning a new container for a feature test or running a data migration as part of a new
software release.

e Composability: Command-line tools are designed to work together. The output of the GridDB
Cloud CLI can be "piped" into other standard utilities like jq for JSON parsing, grep for filtering,
or awk for text processing, creating powerful one-line commands.

In essence, the GridDB Cloud CLI is a purpose-built wrapper around the GridDB Cloud Web API. It
abstracts away the complexities of handling HTTP requests, managing authentication tokens, and
formatting API calls, presenting a clean and intuitive set of commands for direct database interaction.

12.2 Installation and Initial Configuration

The CLI is distributed as a single, self-contained binary, making installation a trivial process. Once
downloaded, the first and most critical step is configuring the tool to securely connect to your GridDB
Cloud account.

The tool relies on reading a . griddb.yaml file in your home directory. So go ahead and make one of
those:

60

Shell

$ vim ~/.griddb.yaml

cloud_url:
"https://cloud5327.griddb.com:443/griddb/v2/gs_clustermfcloud5237/dbs/
ZV8LOP18"

cloud_username: "MO@gaXVKFEDG-user"

cloud_pass: "password"

This interactive prompt asks for three key pieces of information:

1. GridDB Cloud FQDN: The fully qualified domain name (hostname) of your GridDB Cloud
portal.

2. Username: The username for your GridDB account.

3. Password: Your account password.

This local configuration file is responsible for securely storing your connection details and handling the
underlying authentication tokens for all subsequent commands. This one-time setup means you do not
need to provide your credentials for every operation.

12.3 Core Operations: Querying and Introspection

With the CLI configured, you can immediately begin interacting with your database. The primary
function for data retrieval is the sql command. This command allows you to run any valid GridDB SQL
query directly from your terminal.

For instance, to retrieve the 10 most recent records from a device_readings container, the command
would be:

Shell

S griddb-cloud-cli sql query -s "SELECT * FROM device_readings ORDER
BY timestamp DESC LIMIT 10" --pretty

The CLI sends this query to your GridDB Cloud instance and prints the result to the standard output as
a JSON object. This raw JSON output is machine-readable and perfect for automation. For human

readability, it can be used with the pretty flag to add indents and line breaks, or it can be piped to a
tool like jq:

61

Shel
$ griddb-cloud-cli sql query -s "SELECT * FROM devicel ORDER BY ts

DESC LIMIT 18" | ijq

{
[

{
"Name": "ts",
"Type": "TIMESTAMP",
"Value": "2020-07-19T16:49:51.700Z"

}

{
"Name": "co",
"Type": "DOUBLE",
"Value": 0.005918290620131231

s

{
"Name" : "humidity",
"Type": "DOUBLE",
"Value": 49.5

¥

{
"Name": "light",
"Type": "BOOL",
"Value": false

}

{
"Name": "lpg",
"Type": "DOUBLE",
"Value": 0.008698836021386215

s

{
"Name": "motion",
"Type": "BOOL",
"Value": false

}

{
"Name" : "smoke",
"Type": "DOUBLE",

62

"Value": 0.023410239292288602

¥

{
"Name": "temp",
"Type": "DOUBLE",
"Value": 21.9

}

Beyond executing queries, the CLI provides essential "introspection" commands for exploring your
database structure:

e show <container>: shows schema of container
e list: Lists all containers (the equivalent of tables) within a specified database.

These commands are fundamental for scripting, as they allow a script to dynamically discover database
or container names before performing operations on them.

12.4 The CLI in Practice: A Tool for Automation

The true power of the GridDB Cloud CLI is realized when it is integrated into automated workflows. By
removing the need for manual intervention, it enables robust, repeatable processes essential for
modern loT application management.

Consider a simple daily reporting script. A Bash script could use the CLI to execute a SQL query that
aggregates the previous day's sensor data, formats the JSON output with jg, and emails the results to
the operations team.

63

Shell
#!/bin/bash

Fetch daily summary from GridDB Cloud
SUMMARY _DATA=$(griddb-cloud-cli sql query -s "SELECT MAX(temperature)
FROM device_readings WHERE timestamp > NOW() - 1 DAY")

Format and send the report

echo "Daily Max Temperature Report:" > report.txt

echo SSUMMARY_DATA | jq . >> report.txt

mail -s "Daily Report" ops-team@example.com < report.txt

In a CI/CD context, the CLI could be used in a pipeline to automatically verify that a database schema
change was applied correctly or to load a set of test data into a container before running integration
tests.

By providing a simple, scriptable interface for powerful database operations, the GridDB Cloud CLI
becomes an indispensable tool in the IoT developer's toolkit, promoting efficiency, reliability, and
automation.

64

	GridDB Fundamentals
	
	
	Chapter 1. An Introduction to IoT and Time-Series Data
	1.1 The IoT Data Deluge
	1.2 Why Traditional Databases Struggle
	1.3 Introducing GridDB: A Database Built for IoT
	1.4 GridDB in Action: A Smart Factory Use Case
	1.5 Summary

	Chapter 2. Core Concepts: Containers and Data Modeling
	2.1 The Container: Your Basic Unit of Storage
	2.2 The First Principle: Design for a JOIN-less World
	2.3 The "One Container Per Sensor" Model
	2.4 A Concrete Schema Example
	2.5 Summary

	Chapter 3. Working with Time-Series Data
	3.1 Managing the Data Lifecycle: Partitioning and Expiry
	3.2 Querying with Time: SQL Time-Series Functions
	Downsampling with GROUP BY RANGE

	3.3 Aggregation and Real-Time Analytics
	3.4 Optimizing for Bulk Operations
	3.5 Summary

	Chapter 4. Writing Data to GridDB
	4.1 The Core Pattern: Writing with the Java Client
	Connecting to the GridDB Cluster
	Defining a Schema with a Java Class
	Putting a Single Row

	4.2 The Key to Performance: Batch Inserts with multiPut()
	4.3 Alternative Methods for Writing Data
	Writing with Python
	Writing with the JDBC Driver
	Writing with the Web API

	
	4.4 Summary

	Chapter 5. Querying Data from GridDB
	5.1 The Primary Method: Querying with SQL
	Fetching a Set of Rows with JDBC
	Server-Side Aggregations

	5.2 Querying from Python: The Data Scientist's Toolkit
	Basic Queries in Python
	The Power of Pandas DataFrames
	Python And Apache Arrow

	5.3 Alternative Query Interfaces
	Using SQL with the JDBC Driver
	Using the Web API

	
	5.4 Summary
	Chapter 6. Performance Tuning and Optimization Strategies
	6.1 The Primary Bottleneck: Network Latency
	6.2 Optimizing Write Operations: The Power of multi_put()
	The Inefficient Approach: Row-by-Row put()
	The Optimized Approach: Batching with multi_put()

	6.3 Optimizing Read Operations: Querying in Bulk
	The Inefficient Approach: Single-Key Queries in a Loop
	The Optimized Approach: MULTI_GET and IN Clauses

	Chapter 7. Real-Time Streaming with Apache Kafka
	7.1 The Role of Kafka in an IoT Architecture
	7.2 The GridDB Kafka Connect Framework
	7.3 Ingesting Data: The GridDB Sink Connector
	Setup and Configuration
	Sending Data

	7.4 Exporting Data: The GridDB Source Connector
	7.5 Summary

	Chapter 8. Building a Secure API with Flask
	8.1 The Architecture: GridDB as a Unified Data and Identity Store
	8.2 Project Setup and Dependencies
	8.3 Schema Design for Authentication
	8.4 Implementing the Authentication Flow
	User Registration
	Token Issuance (Login)

	8.5 Protecting API Endpoints
	8.6 Summary

	
	Chapter 9. Introduction to GridDB Cloud
	9.1 What is GridDB Cloud?
	9.2 Why Use the Cloud? On-Premises vs. Managed Service
	9.3 Interacting with GridDB Cloud: The Web API
	9.4 A Look Ahead: The Broader GridDB Ecosystem
	9.5 Summary
	Chapter 10. Serverless Integration with Microsoft Azure IoT Hub
	10.1 The Serverless IoT Architecture
	
	10.2 Device Provisioning and Security
	10.3 The Ingestion Engine: An Azure Function
	
	10.4 Best Practices for Serverless Integration
	10.5 Summary
	Chapter 11. Cloud-Native Visualization: Pairing GridDB Cloud with Grafana Cloud
	11.1 The Cloud Advantage: Simplicity and Scalability
	11.2 The Integration Architecture: Connecting via the Infinity Plugin
	1. Initial Configuration and Security
	2. Setting Up the Infinity Datasource
	3. Querying and Visualization

	Chapter 12: Streamlining Cloud Management with the GridDB Cloud CLI
	12.1 The "Why" of a Command-Line Interface
	12.2 Installation and Initial Configuration
	12.3 Core Operations: Querying and Introspection
	12.4 The CLI in Practice: A Tool for Automation

