
	
	
	
	
	
	
	
	
	
	

	
	
GridDB	Reliability	and	Robustness	

April	26,	2017	
Revision	1.0.7	

	
	 	

	 2	

Table	of	Contents	
	
Executive	Summary	..	3	
Introduction	...	3	
Reliability	Features	...	3	
Hybrid	Cluster	Management	Architecture	...	4	
Partition	Replication	..	6	
Writing	Replicas	...	7	
Failover	...	8	
Replacing	a	Node	..	8	

Client	Robustness	..	10	
Real-World	Testing	..	11	
Follower	Failure	...	11	
Master	Failure	...	12	
Failure	Latency	..	12	
Adding	a	New	Node	...	13	

Conclusion	..	14	
	
	
	
List	of	Tables	and	Figures	
	
Figure	1:	Master	Failover	Sequence	..	5	
Figure	2:	Autonomous	Data	Distribution	Algorithm	(ADDA)	...	6	
Figure	3:	Difference	Between	Asynchronous	and	Semi-synchronous	Updates	7	
Figure	4:	Synchronization	after	Node	Failure	...	8	
Figure	6:	ADDA	Synchronizing	Records	...	9	
Figure	7:	Normalized	Throughput	Disabling	GridDB	Follower	..	11	
Figure	8:	Normalized	Throughput	Disabling	GridDB	Master	..	12	
Figure	9:	Percent	of	Partitions	Replicated	to	a	new	GridDB	Node	13	
	
Table	1:	Request	latency	during	node	failures.	..	13	
	 	

	 3	

Executive	Summary	
	
Fixstars	explains	the	reliability	features	of	Toshiba’s	GridDB	NoSQL	database	
software	and	how	in	practice	they	work.	

Introduction	
	
Although	big	data	has	grown	and	databases	have	begun	to	scale-out	by	creating	
distributed	networks	of	inherently	unreliable	servers,	the	market	still	demands	
error-free,	100%	availability.	Database	software	has	now	become	the	key	to	
providing	scalability	and	reliability.	
	
Typically,	database	reliability	is	defined	as	two	factors,	availability	--	or	how	
infrequently	the	database	is	offline	--	and	consistency	--	which	means	returning	the	
correct	result.	GridDB	can	be	both	highly	available	and	consistent	depending	on	its	
configuration.	
	
This	white	paper	examines	the	design	of	the	GridDB	software	as	described	in	the	
GridDB	Technical	Design	Document1	and	the	mechanisms	in	place	that	allow	GridDB	
to	both	scale-out	and	remain	reliable.		The	three	main	facets	of	GridDB’s	reliability	
are:	
	

- Hybrid	Cluster	Management	Architecture	
- Partition	Replication	with	the	Advanced	Data	Distribution	Algorithm.	
- Client	Robustness	

	
These	mechanisms	are	also	demonstrated,	providing	an	example	on	how	developers	
and	administrators	should	expect	their	GridDB	cluster	to	behave	in	the	event	of	a	
failure.		

Reliability	Features	
	
Like	many	other	distributed	databases,	GridDB	has	several	features	designed	to	
ensure	it	can	maintain	high	availability,	such	as	partition	replication	and	client	
robustness.	Unlike	many	distributed	databases,	GridDB	has	a	unique	hybrid	cluster	
management	architecture	that	provides	the	excellent	performance	of	a	master/slave	
configuration,	with	nearly	the	same	fault	tolerance	of	a	peer-to-peer	architecture.	

																																																								
1	http://www.griddb.org/griddb_nosql/manual/GridDBTechnicalDesignDocument.pdf	
	

	 4	

	

Hybrid	Cluster	Management	Architecture	
	
There	are	generally	two	types	of	clusters:	master/slave	and	peer-to-peer.	
A	master/slave	cluster	has	a	single	node	or	single	set	of	nodes	that	act	as	a	master,	
which	orchestrates	the	operation	of	the	remaining	slave	nodes.	This	architecture	
has	little	overhead	but	the	master	node	presents	a	single	point	of	failure	as	well	as	a	
choke	point	that	can	limit	the	scalability	of	the	database.	This	makes	master/slave	
clusters	good	for	performance	but	are	not	as	reliable.	MongoDB,	for	example,	uses	
fixed	masters	called	primary	nodes.	
	
In	a	peer-to-peer	cluster,	every	node	is	identical	and	has	the	same	responsibilities.	
In	the	case	of	node	failure,	the	remaining	nodes	can	easily	take	over	for	a	failed	
node,	though	overhead	to	maintain	consistency	is	quite	high.	Peer-to-peer	clusters	
are	good	for	reliability	but	the	architecture	can	suffer	from	performance	problems,	
especially	without	fine	tuning.	Cassandra	uses	a	peer-to-peer	cluster	topography.		
	
GridDB	has	a	hybrid	cluster	architecture.	To	quickly	summarize,	all	nodes	in	a	
GridDB	cluster	are	identical	and	one	node	is	elected	master.	If	the	master	fails,	any	
of	the	remaining	nodes	can	take	over.		
	
On	start	up,	the	master	is	initially	elected	using	a	bully	algorithm	where	all	nodes	
send	messages	with	their	ID	and	the	node	with	the	highest	ID	wins.	The	master	then	
receives	heartbeat	messages	from	the	follower	nodes.		
	
Each	node	in	a	GridDB	cluster	has	two	roles,	it	can	be	a	master	or	follower	and	a	
partition	owner,	backup,	or	catch-up.	The	master	is	the	owner	of	the	partition	table	
and	the	partition	table	is	replicated	to	all	the	follower	nodes.	In	the	case	of	a	master	
failure,	one	of	the	followers	is	promoted	to	being	the	master.		
	
Partitions	are	logical	blocks	of	data	that	store	containers.	The	owner	of	a	partition	
can	both	read	and	write	the	partition	while	the	backup	only	permits	direct	read	
operations.	A	catch-up	node	stores	a	replica	of	the	partition	but	clients	will	not	
Yrefer	to	it	until	it’s	promoted	to	a	backup	node.		
	
When	a	follower	does	not	receive	the	master’s	heartbeat,	the	follower	can	then	call	
an	election,	and	the	same	bully	algorithm	that	was	used	to	initially	determine	the	
master	is	utilized	again	to	determine	the	replacement	master.	Since	all	followers	
have	a	replica	of	the	partition	table,	the	cluster	resumes	normal	operation	within	
seconds.	
	

	 5	

		

Figure	1:	Master	Failover	Sequence	

	 	

	 6	

Partition	Replication	
	
Replication	is	the	primary	factor	in	how	scale-out	databases	can	provide	high	
reliability.		Essentially,	replication	stores	each	record	on	multiple	nodes	within	the	
cluster.		
	
In	GridDB,	the	number	of	replicas	can	be	configured	as	part	of	the	gs_cluster.json	
file.	If	the	number	of	replicas	is	set	to	one,	there	will	be	a	loss	of	availability	if	any	
node	in	the	cluster	fails,	but	if	the	number	of	replicas	is	set	to	three,	any	two	nodes	
may	fail	without	a	loss	of	data	or	availability.	Of	course,	setting	replication	to	three	
means	that	the	owner	and	two	backups	will	store	the	data,	consuming	three	times	
the	amount	of	resources	required	if	replication	was	set	to	one.	
	
The	Autonomous	Data	Distribution	Algorithm	(ADDA)	controls	how	and	where	
replicas	are	written	while	performing	background	synchronization,	allowing	GridDB	
to	scale	without	interruption.		
	

Figure	2:	Autonomous	Data	Distribution	Algorithm	(ADDA)	

	
	
Figure	2	demonstrates	ADDA’s	Long-Term	synchronization.	In	order	to	reduce	the	
load,	long	term	synchronization	is	executed	for	each	partition	on	a	fixed	interval	
(usually	1	minute)	in	the	background	.	
	
Short-Term	synchronization	is	activated	when	all	logs	after	the	current	edition	are	
available.	The	amount	of	data	sharply	increases	due	to	short-term	synchronization,	
but	processing	is	interrupted	after	30	seconds	(default).

	 	

	 7	

Writing	Replicas	
	
There	are	two	methods	in	which	GridDB	may	write	replicated	records,	
asynchronously	or	semi-synchronously:	
	
Asynchronous	updates	will	first	update	the	owner	of	the	record	and	then	return	to	
the	client	before	updating	the	backup	nodes.	This	method	provides	good	
performance	but	can	lead	to	consistency	issues	if	the	owner	of	the	record	fails	
before	the	backup	nodes	are	able	to	process	the	update.	
	
Semi-synchronous	updates	are	processed	first	by	the	owner	and	then	all	the	backup	
nodes	before	returning	to	the	client.	The	initial	operation	will	take	longer	than	if	it	
was	done	asynchronously,	but	the	records	will	always	be	consistent	between	the	
owner	and	backup	results.		
	

														 									
Figure	3:	Difference	Between	Asynchronous	and	Semi-synchronous	Updates	

	 	

	 8	

Failover		
	
Failover	of	a	partition	owner	occurs	when	the	master	has	not	received	a	heartbeat	
from	the	owner	of	a	partition	in	the	specified	time.	The	master	then	chooses	a	new	
owner	from	the	available	backup	nodes	and	a	new	back	up	node	from	the	available	
catch	up	nodes	and	distributes	the	new	partition	table	to	all	of	the	followers.	

																					 	
Figure	4:	Synchronization	after	Node	Failure	

	
The	new	owner	and	new	backup	will	then	confirm	their	update	log	is	identical,	and	
if	it	is	not,	they	will	synchronize.	Since	the	deltas	between	update	logs	will	be	fairly	
small,	this	short-term	synchronization	should	be	fairly	fast	and	complete	within	
seconds.	
	

Replacing	a	Node	
	
When	a	new	node	connects	to	the	cluster,	it	will	be	assigned	the	role	of	a	catch-up	
node,	which	is	essentially	a	backup	node’s	backup.	After	the	initial	synchronization	
is	complete,	it	can	be	promoted	to	a	backup	role	(and	then	to	an	owner	role)	as	
required.	
	
Catch-up	nodes	will	be	promoted	to	backup	nodes	when	a	node	fails,	there	are	an	
insufficient	number	of	backup	nodes	for	the	replica	setting,	or	an	inconsistency	
exists	between	the	partition	owner	and	back	up	nodes.		

	 9	

	

	
Figure	5:	ADDA	Maintaining	Replication	After	a	Failure	and	Replacement.	

In	Figure	5,	ADDA	starts	synchronizing	partitions	between	N1	and	N3	after	N2	fails.	
When	N2	is	replaced	with	a	new	node	(N2')	at	t25,	it	is	able	to	rebalance	the	
partitions	between	nodes	so	N2'	stores	a	relative	number	of	records.		
	

	
Figure	6:	ADDA	Synchronizing	Records	

Figure	6	demonstrates	the	two-phase	synchronization	ADDA	performs	after	a	node	
failure	at	t11	while	data	in	consistently	added	or	updated.	Initially	during	long-term	
synchronization,	large	memory	blocks	are	synchronized	which	allows	for	the	
replacement	node	to	catch	up	to	the	owner	quickly	and	then	during	short-term	
synchronization	starting	near	t25	Redo	Logs	are	transferred	and	applied	to	the	
memory	blocks.		Long-term	synchronization	is	a	high-speed	process	while	short-
term	synchronization	is	the	case	of	applying	many	Redo	logs.	This	two-phase	
approach	allows	the	Owner	to	continue	to	process	request	updates	while	the	New	
Backup	is	synchronizing.		
	
	 	

	 10	

Client	Robustness	
	
The	previous	sections	of	this	white	paper	have	focused	on	reliability	within	the	
cluster	of	nodes,	but	to	have	a	completely	reliable	system,	the	client	itself	needs	to	
be	robust	enough	to	tolerate	faults	to	its	connections	to	the	cluster.	It	also	needs	to	
tolerate	individual	nodes	failing	as	they	communicate	directly	with	partition	
owners.	
	
Initially,	the	client	will	receive	a	message	from	the	master	node	that	specifies	the	
master	and	then	the	client	will	also	cache	the	partition	table,	which	it	retains	until	
there	is	an	error.		This	way,	there	are	minimal	requests	sent	to	the	master	which	will	
prevent	the	master	from	becoming	a	choke	point.	Furthermore,	a	node	is	specified	
with	reference	to	a	partition	table	of	a	master	node,	and	a	statement	is	performed.	
	
The	client	library	has	a	client	failover	mechanism	that	enables	the	client	to	
withstand	failure	if	there	is	a	node	or	network	failure.	If	a	connection	is	closed	or	the	
partition	checksums	do	not	match	between	the	client’s	cache	and	the	node,	the	
cache	is	invalidated	and	the	statement	is	rerun	until	it	succeeds.		The	client	library	
only	returns	an	error	to	the	application	if	the	timeout	is	exceeded.		
	 	

	 11	

Real-World	Testing	
	
To	perform	real	world	testing,	Fixstars	constructed	an	8-node	cluster	where	3	nodes	
would	run	GridDB	and	the	other	5	nodes	would	run	YCSB2	to	perform	a	basic	
workload.	GridDB	Standard	Edition	version	2.9.0	was	used	on	the	GridDB	nodes.		
	

Follower	Failure	
	
After	GridDB	was	started	an	insert-only	workload	was	run	on	five	nodes	once	the	
server	processes	settled	into	a	stable	state	and	throughput	was	monitored	for	the	
entire	duration	of	the	test.	
	
After	a	set	amount	of	time,	the	database	server	process	a	random	GridDB	follower	
was	killed	while	throughput	continued	to	be	monitored.		
	
The	following	table	shows	normalized	throughput	over	the	course	of	the	test.	
	
	

	
Figure	7:	Normalized	Throughput	Disabling	GridDB	Follower	

																																																								
2	https://github.com/brianfrankcooper/YCSB	

GridDB	retains	nearly	the	same	
throughput	as	before	Follower	failure.	

	 12	

	
When	a	GridDB	follower	fails,	throughput	drops	slightly	before	quickly	recovering	
and	is	then	able	to	maintain	the	same	throughput	as	prior	to	the	failure.		
	

Master	Failure	
	
After	GridDB	was	started	an	insert-only	workload	was	run	on	five	nodes	once	the	
server	processes	settled	into	a	stable	state	and	throughput	was	monitored	for	the	
entire	duration	of	the	test.	
	
After	a	set	amount	of	time,	the	database	server	process	on	the	GridDB	master	was	
killed	while	throughput	continued	to	be	monitored.		
	

	
Figure	8:	Normalized	Throughput	Disabling	GridDB	Master	

	
In	most	master/slave	applications,	the	master	failing	would	lead	to	significant	
downtime,	but	GridDB	recovers	from	the	master	failing	within	30	seconds	and	
resumes	processing	requests	at	a	similar	throughput	pre-failure.		

Failure	Latency	
	
While	running	the	Master	and	Follower	failover	tests,	latency	data	was	also	
collected.	The	data	demonstrates	absolute	and	relative	response	times	during	a	
node	failure	
	
	
	
	

Recovery	from	Master	
failure	within	30	seconds	

	 13	

	 Average	 95%	Percentile	 99%	Percentile	 Max	
No	Failure	 487us	 998us	 1,710us	 92,699us	

Follower	
Failure	

495us	 961us	 1,837us	 1,763,890us	

Master	
Failure	

578us	 1,052us	 2,495us	 21,643,263us	

Table	1:	Request	latency	during	node	failures.	

	
The	total	runtime	for	the	YCSB	workload	is	approximately	5	minutes	with	the	failure	
occurring	approximately	100	seconds	after	YCSB	begins.	Examining	log	files	show	
that	the	GridDB	cluster	is	recovering	for	approximately	30	seconds	or	10%	of	the	
total	duration.	This	would	mean	that	both	the	95%	and	99%	Percentile	Latencies	
would	include	the	duration	of	the	recovery	period	after	the	failure	is	triggered.		

Adding	a	New	Node	
	
In	this	test,	a	database	cluster	consisting	of	two	servers	configured	with	a	
replication	level	of	two	were	started,	with	2GB	of	data	loaded	with	YCSB;	a	third	
node	is	then	added	to	the	cluster.	The	statistics	of	the	cluster	were	then	monitored	
while	the	data	records	from	the	initial	two	nodes	were	transferred	to	the	new	node.		
	

	
Figure	9:	Percent	of	Partitions	Replicated	to	a	new	GridDB	Node		

Figure	9	demonstrates	ADDA	performing	long-term	synchronization	after	a	third	
node	is	added	to	a	two-node	cluster	with	replication	set	to	two.		

	 14	

	
Long	Term	Synchronization	is	executed	on	one-minute	intervals	causing	the	amount	
of	synchronized	data	to	increase	step	by	step.	Since	the	node	is	added	to	a	cluster	
there	is	more	than	90	segments	corresponding	to	1/3	×	2	=	2/3	of	the	total	number	
of	partitions	(default	is	128).	
	
Once	synchronization	of	the	required	partitions	is	completed,	the	three-node	cluster	
is	in	a	stable	state.

Conclusion	
	
GridDB	is	a	scale-out	database	that	is	both	fast	and	extremely	reliable	with	Hybrid	
Cluster	Management	Architecture,	Partition	Replication,	and	Client	Robustness	
features	that	have	demonstrated	efficacy	with	the	error	injection	testing	performed	
by	Fixstars.	Meanwhile,	GridDB’s	Autonomous	Data	Distribution	Algorithm	ensures	
that	after	a	failure	or	upgrade,	the	data	stored	in	GridDB	is	stored	in	a	balanced	
manner.		

