
Copyright © 2013-2016 TOSHIBA CORPORATION

GridDB Technical Reference

Revision: 1040

Table of Contents

 1 Introduction

o 1.1 Aim & Configuration of this manual

 2 What is GridDB?

o 2.1 Futures of GridDB

 2.1.1 Big data(volume)

 2.1.2 Various data types(Variety)

 2.1.3 High-speed processing(Velocity)

 2.1.4 Reliability/availability

 3 Structure of GridDB

o 3.1 Composition of a cluster

 3.1.1 Status of node

 3.1.2 Status of cluster

o 3.2 Data model

 4 GridDB functions

o 4.1 Resource management

o 4.2 User management

 4.2.1 OS user

 4.2.2 GridDB user

 4.2.3 Usable function

 4.2.4 Database and user

o 4.3 Data management function

 4.3.1 Container data type

 4.3.2 Container ROWKEY

 4.3.3 Container Index

 4.3.4 Timeseries container

 4.3.5 Selection and interpolation of timeseries container

 4.3.6 Affinity function

http://10.45.237.147/document/manual/technical_reference/technical_reference_emacs.html#sec-1.1

Copyright © 2013-2016 TOSHIBA CORPORATION

o 4.4 Transaction processing

 4.4.1 Starting and ending a transaction

 4.4.2 Transaction consistency level

 4.4.3 Transaction isolation level

 4.4.4 MVCC

 4.4.5 Lock

 4.4.6 Data perpetuation

 4.4.7 Timeout process

 4.4.8 Replication function

o 4.5 Trigger function

o 4.6 Failure process function

 4.6.1 Type and treatment of failures

 4.6.2 Client failover

 4.6.3 Event log function

o 4.7 Data access

 4.7.1 TQL and SQL

 4.7.2 API

o 4.8 Operating function

 5 Parameters

o 5.1 Cluster definition file （gs_cluster.json)

o 5.2 Node definition file (gs_node.json)

 6 Terminology

 7 System limiting values

http://10.45.237.147/document/manual/technical_reference/technical_reference_emacs.html#sec-4.7.1

Copyright © 2013-2016 TOSHIBA CORPORATION

1. Introduction

1.1 Aim & configuration of this manual

This manual explains the GridDB architecture and functions provided.

This manual is targeted at administrators who are in-charge of the operational

management of GridDB and designers and developers who perform system design

and development using GridDB

The manual is composed as follows.

 What is GridDB?

o Describes the features and application examples of GridDB.

 Architecture of GridDB

o Describes the data model and cluster operating structure in GridDB.

 Functions provided by GridDB

o Describes the data management functions, functions specific to the

data model and operating functions provided by GridDB.

 Parameters

o Describes the parameters to control the operations in GridDB.

Copyright © 2013-2016 TOSHIBA CORPORATION

2 What is GridDB?

GridDB is a distributed NoSQL database to manage a group of data (known as a row) that is

made up of a key and multiple values. Besides having a composition of an in-memory database

that arranges all the data in the memory, it can also adopt a hybrid composition combining the

use of a disk (including SSD as well) and a memory. By employing a hybrid composition, it can

also be used in small scale, small memory systems.

In addition to the 3 Vs (volume, variety, velocity) required in big data solutions, data

reliability/availability is also assured in GridDB. Using the autonomous node monitoring and load

balancing functions, laborsaving can also be realized in cluster applications.

2.1 Features of GridDB

2.1.1 Big data (volume)

As the scale of a system expands, the data volume handled increases and thus the system

needs to be expanded so as to quickly process the big data.

System expansion can be broadly divided into 2 approaches - scale-up (vertical scalability) and

scale-out (horizontal scalability).

 What is scale-up?

This approach reinforces the system by adding memory to the operating machines,

using SSD for the disks, adding processors, and so on. Generally, there is a need to stop

the nodes once during scale-up operation as it is not a cluster application using multiple

machines even though each individual processing time is shortened and the system

processing speed is increased. When a failure occurs, failure recovery is also

time-consuming.

 What is scale-out?

This approach increases the number of nodes constituting a system to improve the

processing capability. Generally, there is no need to completely stop service when a

failure occurs and during maintenance as multiple nodes are linked and operating

together. However, the application management time and effort increases as the number

Copyright © 2013-2016 TOSHIBA CORPORATION

of nodes increases. This architecture is suitable for performing highly parallel

processing.

In GridDB, in addition to the scale-up approach to increase the number of operating nodes and

reinforce the system, new nodes can be added to expand the system with a scale-out approach

to incorporate nodes into an operating cluster.

As an in-memory processing database, GridDB can handle a large volume of data with its

scale-out model. In GridDB, data is distributed throughout the nodes inside a cluster that is

composed of multiple nodes. Therefore, a large-scale memory database can be provided as the

memories of multiple nodes can be used as a single, large memory space.

In addition, since data management of a hybrid composition that combines the use of disk with

memory is also possible, data exceeding the memory size can be retained and accessed even

when operating with a standalone node. A large capacity that is not limited by the memory size

can also be realized.

Combined use of in-memory/disk

System expansion can be carried out online with a scale-out approach. As a result, a system in

operation can be supported without having to stop it as it will support the increasing volume of

data as the system grows.

Copyright © 2013-2016 TOSHIBA CORPORATION

In the scale-out approach, data is arranged in an appropriate manner according to the load of the

system in the nodes built into the system. As GridDB will optimize the load balance, the

application administrator does not need to worry about the data arrangement. Operation is also

easy because a structure to automate such operations has been built into the system.

Scale-out model

2.1.2 Various data types (variety)

GridDB data adopts a Key-Container data model that is expanded from Key-Value. Data is

stored in a device equivalent to a RDB table known as a container. (A container can be

considered a RDB table for easier understanding.)

When accessing data in GridDB, the model allows data to be short-listed with a key thanks to its

Key-Value database structure, allowing processing to be carried out at the highest speed. A

design that prepares a container serving as a key is required to support the entity under

management.

Copyright © 2013-2016 TOSHIBA CORPORATION

Data model

Besides being suitable for handling a large volume of time series data (TimeSeries container)

that is generated by a sensor or the like and other values paired with the time of occurrence,

space data such as position information, etc. can also be registered and space specific

operations (space intersection) can also be carried out in a container. A variety of data can be

handled as the system supports non-standard data such as array data, BLOB and other data as

well.

A unique compression function and a function to release data that has expired and so on are

provided in a TimeSeries container, making it suitable for the management of data which is

generated in large volumes.

2.1.3 High-speed processing (velocity)

A variety of architectural features is embedded in GridDB to achieve high-speed processing.

 Processing is carried out in the memory space as much as possible

In the case of an operating system with an in-memory in which all the data is arranged,

there is no real need to be concerned about the access overhead in the disk. However,

in order to process a volume of data so large that it cannot be saved in the memory,

there is a need to localize the data accessed by the application and to reduce access to

the data arranged in the disk as much as possible.

In order to localize data access in GridDB, a function is provided to arrange related data

in the same block as far as possible. Since data in the data block can be consolidated

according to the hints provided in the data, memory mishit is reduced during data access,

thereby increasing the processing speed for data access. By setting hints for memory

consolidation according to the access frequency and access pattern in the application,

limited memory space can be used effectively for operation. (Affinity function)

 Reduces the overhead

In order to reduce events that cause delay in the database execution by as much as

possible e.g. a lock or latch event when accessing the database in parallel, exclusive

memory and DB files are assigned to each CPU core and thread, so as to eliminate time

spent waiting for exclusion and synchronization processing to be carried out.

Copyright © 2013-2016 TOSHIBA CORPORATION

Architecture

In addition, direct access between the client and node is possible in GridDB by caching

the data arrangement when accessing the database for the first time on the client library

end. Since direct access to the target data is possible without going through the master

node to manage the operating status of the cluster and data arrangement, access to the

master node can be centralized to reduce communication cost substantially.

Access from a client

 Processing in parallel

High-speed processing is realized through parallel processing e.g. by dividing a request

into processing units capable of parallel processing in the drive engine and executing the

process using a thread in the node and between nodes, as well as dispersing a single

large data into multiple nodes (partitioning) for processing to be carried out in parallel

between nodes.

Copyright © 2013-2016 TOSHIBA CORPORATION

2.1.4 Reliability/availability

Duplicate data (hereinafter known as replicas) are created in the cluster and processing can be

continued by using these replicas even when a failure occurs in any of the nodes constituting a

cluster. Special operating procedures are not necessary as the system will also automatically

perform re-arrangement of the data after a node failure occurs (autonomous data arrangement).

Data arranged in a failed node is restored from a replica and then the data is re-arranged so that

the set number of replicas is reached automatically.

Duplex, triplex or multiplex replica can be set according to the availability requirements.

Each node performs persistence of the data update information using a disk, and all registered

and updated data up to that point in time can be restored without being lost even if a failure

occurs in the entire cluster system.

In addition, since the client also possesses cache information on the data arrangement and

management, upon detecting a node failure, it will automatically perform a failover and data

access can be continued using a replica.

High availability

Copyright © 2013-2016 TOSHIBA CORPORATION

3 Structure of GridDB

The operating structure and data model of a GridDB cluster is described.

3.1 Composition of a cluster

GridDB is operated by clusters which are composed of multiple nodes. To access the

database from an application system, the nodes have to be started up and the cluster has to

be constituted (cluster service is executed).

A cluster is formed and cluster service is started when a number of nodes specified by the

user joins the cluster. Cluster service will not be started and access from the application will

not be possible until all nodes constituting a cluster have joined the cluster.

A cluster needs to be composed even when operating with 1 node only. In this case, the

number of nodes constituting a cluster is 1. A composition that operates a single node is

known as a single composition.

Cluster name and number of nodes constituting a cluster

Copyright © 2013-2016 TOSHIBA CORPORATION

Cluster names are used to separate multiple clusters so that the correct clusters (using the

intended nodes) can be composed using multiple GridDB nodes on a network. Multiple GridDB

clusters can be composed in the same network. A cluster is composed of nodes with the same

cluster name, number of nodes constituting a cluster, multi-cast address setting. When

composing a cluster, the parameters need to be specified as well in addition to setting the cluster

name in the cluster definition file which is a definition file saved for each node constituting a

cluster.

The operation of a cluster composition is shown below.

Operation of a cluster composition

To start up a node and compose a cluster, the operation commands gs_startnode/gs_joincluster

command or gs_sh are used. In addition, there is a service control function to start up the nodes

at the same time as the OS and to compose the cluster.

To compose a cluster, the number of nodes joining a cluster (number of nodes constituting a

cluster) and the cluster name must be the same for all the nodes joining the cluster.

http://10.45.237.147/document/manual/technical_reference/technical_reference_emacs.html#gs_command
http://10.45.237.147/document/manual/technical_reference/technical_reference_emacs.html#gs_sh

Copyright © 2013-2016 TOSHIBA CORPORATION

Even if a node fails and is separated from the cluster after operation in the cluster started, cluster

service will continue so long as the majority of the number of nodes is joining the cluster.

Since cluster operation will continue as long as the majority of the number of nodes is in

operation, when a node is separated online due to maintenance and other work during cluster

operation, it can be incorporated after the maintenance work ends. Furthermore, nodes can be

added online to reinforce the system.

3.1.1 Status of node

There are 2 GridDB status, nodeStatus and clusterStatus that can be checked with a gs_stat

command. The status of a node is determined by these 2 statuses.

nodeStatus indicates the operating status of the node while clusterStatus indicates the role of

each node in the constituted cluster. The status of the entire cluster is determined by the status

of these multiple nodes belonging to the cluster.

 Transition in the node status

The node status may be one of the following statuses shown in the diagram below.

Node status

o [STOP]: State in which the GridDB server has not been started in the node.

o [STARTING]: State in which the GridDB server is starting in the node.

Depending on the previous operating state, start-up processes such as recovery

Copyright © 2013-2016 TOSHIBA CORPORATION

processing of the database are carried out. The only possible access from a

client is checking the status of the system with a gs_stat command or gs_sh

command. Access from the application is not possible.

o [STARTED]: State in which the GridDB server has been started in the node.

However, continued access from the application is not possible as the node has

not joined the cluster. To obtain the cluster composition, a command is issued to

join a cluster with the gs_joincluster or gs_sh cluster operating command.

o [WAIT]: State in which the system is waiting for the cluster composition. Nodes

have been informed to join a cluster but the number of nodes constituting a

cluster is insufficient, so the system is waiting for the number of nodes

constituting a cluster to be reached. It also indicates the node status when the

number of nodes constituting a cluster drops below the majority and the cluster

service is stopped.

o [SERVICING]: State in which a cluster has been constituted and access from

the application is possible. However, access may be delayed if synchronization

between the clusters of the partition occurs due to a re-start after a failure when

the node is stopped or the like.

o [STOPPING]: Intermediate state in which a node has been instructed to stop but

has not stopped yet.

o [ABNORMAL]: SERVICING state or state in which an error is detected by the

node in the middle of the state transition. A node in the ABNORMAL state will be

automatically separated from the cluster. After obtaining the operating

information of the system, the system needs to be stopped by force and then

re-started. By re-starting the system, recovery processing will be automatically

carried out.

 Description of state transition: A description of events that serve as an opportunity to

change the status of a node.

State

transition

State transition

event

Description

 ① Command execution Node start-up using gs_startnode command, gs_sh, service start-up

 ② System Automatic transition at the end of recovery processing or loading of

database files

Copyright © 2013-2016 TOSHIBA CORPORATION

State

transition

State transition

event

Description

 ③ Command execution Cluster participation using gs_joincluster/gs_appendcluster

command, gs_sh, service start-up

 ④ System State changes when the required number of component nodes join a

cluster

 ⑤ System When other nodes that make up a cluster are detached from the

service due to a failure, etc., and the number of nodes constituting a

cluster drops below half of the value set.

 ⑥ Command execution Detaches a node from a cluster using a gs_leavecluster command or

gs_sh

 ⑦ Command execution Detaches a node from a cluster using a

gs_leavecluster/gs_stopcluster command or gs-sh

 ⑧ Command execution Stops a node using gs_stopnode command, gs_sh, service stop

 ⑨ System Stops the server process once the final processing ends

 ⑩ System Detached state due to a system failure. In this state, the node needs

to be stopped by force once.

 Node status and nodeStatus, clusterStatus

By using a gs_stat command, the detailed operating information of the node can be

checked with text in the json format. The relationship between the clusterStatus and the

nodeStatus which is a json parameter to indicate the gs_stat is shown below.

Status /cluster/nodeStatus /cluster/clusterStatus

STARTING INACTIVE SUB_CLUSTER

STARTED INACTIVE SUB_CLUSTER

Copyright © 2013-2016 TOSHIBA CORPORATION

Status /cluster/nodeStatus /cluster/clusterStatus

WAIT ACTIVATING or DEACTIVATING SUB_CLUSTER

SERVICING ACTIVE MASTER or FOLLOWER

STOPPING NORMAL_SHUTDOWN SUB_CLUSTER

ABNORMAL ABNORMAL SUB_CLUSTER

 The status of the node can be checked with gs_sh or gs_admin.

3.1.2 Status of cluster

The cluster operating status is determined by the state of each node, and the status may be one

of 3 states - IN OPERATION/INTERRUPTED/STOPPED.

Cluster service starts when all the nodes that make up a cluster (number of nodes constituting a

cluster) specified by the user during initial system construction have joined the cluster.

During initial cluster construction, the state in which the cluster is waiting to be composed when

all the nodes that make up the cluster have not been incorporated into the cluster is known as

[INIT_WAIT]. When the number of nodes constituting a cluster has joined the cluster, the state

will automatically change to the operating state.

There are 2 operating states. These are [STABLE] and [UNSTABLE].

 [STABLE] state

o State in which a cluster has been formed by the number of nodes specified in

the number of nodes constituting a cluster and service can be provided in a

stable manner.

 [UNSTABLE] state

o State in which the number of nodes constituting a cluster has not been fulfilled.

o Cluster service will continue for as long as a majority of the number of nodes

constituting a cluster is in operation.

A cluster can be operated in an [UNSTABLE] state as long as a majority of the nodes are in

operation even if they are detached from a cluster due to maintenance and other reasons.

Copyright © 2013-2016 TOSHIBA CORPORATION

Cluster service is interrupted automatically in order to prevent a split brain from occurring when

the number of nodes making up a cluster falls below the majority of the number of nodes

constituting a cluster. The state in which cluster service has been interrupted is known as [WAIT]

state.

 A split brain

is an action where multiple cluster systems performing the same process provide

simultaneous service when a system is divided due to a hardware or network failure in a

tightly-coupled system that works like a single server interconnecting multiple nodes. If

the operation is continued in this state, data saved as replicas in multiple clusters will be

treated as master data, resulting in data consistency being lost.

To restart cluster service from the [WAIT] state, new nodes are added to a cluster and nodes

with errors are restored. The state will become [STABLE] once the number of nodes constituting

a cluster has joined the cluster again.

When the number of clusters constituting a cluster falls below half due to a failure in a node

constituting the cluster and the cluster operation is disrupted, new nodes are added to a cluster

and nodes with errors are restored. Cluster service is automatically restarted once a majority of

the nodes has joined the cluster.

However, if the operator intentionally uses the gs_leave command to separate the node from the

cluster service e.g. during maintenance operations, and if the number of nodes constituting the

cluster drops below half, cluster service will not be re-started even if additional nodes are added

and more than half the nodes have joined the cluster. In this case, cluster service will not be

re-started until the number of nodes constituting a cluster is reached.

Copyright © 2013-2016 TOSHIBA CORPORATION

Cluster status

A STABLE state is a state in which the value of the json parameter shown in gs_stat,

/cluster/activeCount, is equal to the value of /cluster/designatedCount.

%gs_stat -u admin/admin -s

{

 "checkpoint": {

 "archiveLog": 0,

 ：

 ：

 },

 "cluster": {

 "activeCount":4, ★ Nodes in operation within the cluster

 "clusterName": "test-cluster",

 "clusterStatus": "MASTER",

 "designatedCount": 4, ★ Number of nodes constituting a cluster

 "loadBalancer": "ACTIVE",

 "master": {

 "address": "192.168.0.1",

Copyright © 2013-2016 TOSHIBA CORPORATION

 "port": 10040

 },

 "nodeList": [★ Node list constituting a cluster

 {

 "address": "192.168.0.1",

 "port": 10040

 },

 {

 "address": "192.168.0.2",

 "port": 10040

 },

 {

 "address": "192.168.0.3",

 "port": 10040

 },

 {

 "address": "192.168.0.4",

 "port": 10040

 },

],

 ：

 ：

The status of the cluster can be checked with gs_sh or gs_admin. An example on checking the

cluster status with gs_sh is shown below.

% gs_sh

gs> setuser admin admin gsadm // Setting connecting user

gs> setnode node1 192.168.0.1 10040 // Definition of a node constituting the cluster

gs> setnode node2 192.168.0.2 10040

gs> setnode node3 192.168.0.3 10040

gs> setnode node4 192.168.0.4 10040

Copyright © 2013-2016 TOSHIBA CORPORATION

gs> setcluster cluster1 test150 239.0.0.5 31999 $node1 $node2 $node3 $node4 //

Definition of cluster

gs> startnode $cluster1 // Start-up of all nodes making up the cluster

gs> startcluster $cluster1 // Instructing cluster composition

Waiting for cluster to start.

Cluster has started.

gs> configcluster $cluster1 ★ Checking status of cluster

Name : cluster1

ClusterName : test-cluster

Designated Node Count : 4

Active Node Count : 4

ClusterStatus : SERVICE_STABLE ★ Stable state

Nodes:

 Name Role Host:Port Status

 node1 M 192.168.0.1:10040 SERVICING

 node2 F 192.168.0.2:10040 SERVICING

 node3 F 192.168.0.3:10040 SERVICING

 node4 F 192.168.0.4:10040 SERVICING

s> leavecluster $node2

Waiting for node to separate from cluster

Node has separated from cluster.

gs> configcluster $cluster1

Name : cluster1

ClusterName : test150

Designated Node Count : 4

Active Node Count : 3

ClusterStatus : SERVICE_UNSTABLE ★ Unstable state

Nodes:

 Name Role Host:Port Status

 node1 M 192.168.0.1:10040 SERVICING //Master node

 node2 - 192.168.0.2:10040 STARTED

Copyright © 2013-2016 TOSHIBA CORPORATION

 node3 F 192.168.0.3:10040 SERVICING //Follower node

 node4 F 192.168.0.4:10040 SERVICING // Follower node

3.2 Data model

GridDB is a unique Key-Container data model that resembles Key-Value. It has the following

features.

 A concept resembling a RDB table that is a container for grouping Key-Value has been

introduced.

 A schema to define the data type for the container can be set. An index can be set in a

column.

 Transactions can be carried out on a row basis within the container. In addition, ACID is

guaranteed on a container basis.

GridDB manages data on a block, container, partition, and partition group basis.

Data model

GridDB manages data on a block, container, table, row, partition, and partition group basis.

 Block

A block is a data unit for data persistence processing in a disk (hereinafter known as a

checkpoint) and is the smallest physical data management unit in GridDB.

Multiple container data are arranged in a block. Before initial startup of GridDB, a size of

either 64 KB or 1 MB can be selected for the block size to be set up in the definition file

Copyright © 2013-2016 TOSHIBA CORPORATION

(cluster definition file). Specify 64 KB if the installed memory of the system is low, or if

the frequency of data increase is low.

As a database file is created during initial startup of the system, the block size cannot be

changed after initial startup of GridDB.

 Container

A container consists of multiple blocks. A container is a data structure that serves as an

interface with the user.

There are 2 data types in a container, collection and time series.

 Table

A table is a special container form that exists only in NewSQL products. SQL can be

operated as an interface in NewSQL products.

Before registering data in an application, there is a need to make sure that a container or

table is created beforehand. Data is registered in a container or table.

 Row

A row refers to a row of data to be registered in a container or table. Multiple rows can be

registered in a container or table but this does not mean that data is arranged in the

same block. Depending on the registration and update timing, data is arranged in

suitable blocks within partitions.

Normally, there are columns with multiple data types in a row.

 Partition

A partition is a data management unit that includes 1 or more containers or tables.

A partition is a data arrangement unit between clusters for managing the data movement

to adjust the load balance between nodes and data multiplexing (replica) in case of a

failure. Data replica is arranged in a node to compose a cluster on a partition basis.

Copyright © 2013-2016 TOSHIBA CORPORATION

A node that can be updated against a container inside a partition is known as an owner

node and 1 node is allocated to each partition. A node that maintains replicas other than

owner nodes is a backup node. Master data and multiple backup data exist in a partition,

depending on the number of replicas set.

 Partition group

A group of multiple partitions is known as a partition group.

Data maintained by a partition group is saved in an OS disk as a physical database file.

A partition group is created with a number that depends on the degree of parallelism of

the database processing threads executed by the node.

Data management unit

Copyright © 2013-2016 TOSHIBA CORPORATION

4. GridDB functions

Describes the data management functions, functions specific to the data model,

operating functions and application development interfaces of GridDB.

4.1 Resource management

Besides the database in the memory, there are also resources constituting a GridDB

cluster that are perpetuated in a disk. Perpetuated resources include the following.

 Database file

A database file is a perpetuated file group to write data saved in a node

constituting a cluster into a disk or SSD. A database file is a generic term to

describe the transaction log file that is saved every time the GridDB database

is updated and the checkpoint file that is written regularly by the database in

the memory.

 Definition file

There are 2 types of definition file, a parameter file (gs_cluster.json:

hereinafter known as a cluster definition file) when composing a cluster, and a

parameter file (gs_node.json: hereinafter known as a node definition file) to

set the operations and resources of the node in the cluster. In addition, there

is also a user definition file for GridDB administrator users.

 Event log file

The operating log of the GridDB server is saved. Messages such as errors,

warnings, etc. are saved.

 Backup file

Backup data in the data file of GridDB is saved

The layout of these resources can be defined in GridDB home (path specified in

environmental variable GS_HOME). In the initial installation state, the

Copyright © 2013-2016 TOSHIBA CORPORATION

/var/lib/GridStore directory is GridDB home, and the initial data of each resource is

placed under this directory.

The initial configuration status is as follows.

/var/lib/GridStore/

 admin/

 backup/

 conf/

 gs_cluster.json

 gs_node.json

 password

 data/

 log/

The database directory, backup directory and server event log directory can be

changed by changing the settings of the node definition file as well.

In a system that has multiple disk drives, be sure to change the definition information

in order to prevent loss of backup data during a disk failure.

See Parameters for the contents that can be set in the cluster definition file and node

definition file.

4.2 User management

There are 2 types of GridDB user, an OS user which is created during installation and

a GridDB user to perform operations/development in GridDB (hereinafter known as a

GridDB user).

4.2.1 OS user

An OS user has the right to execute operating functions in GridDB and a gsadm user

is created during GridDB installation. This OS user is hereinafter known as gsadm.

All GridDB resources will become the property of gsadm. In addition, all operating

commands in GridDB are executed by a gsadm.

Copyright © 2013-2016 TOSHIBA CORPORATION

A check is conducted to see whether the user has the right to connect to the GridDB

server and execute the operating commands. This authentication is performed by a

GridDB user.

4.2.2 GridDB user

 Administrator user and general user

There are 2 types of GridDB user, an administrator user and a general user,

which differ in terms of which functions can be used. Immediately after the

installation of GridDB, 2 users, a system and an admin user, are registered as

default administrator users.

An administrator user is a user created to perform GridDB operations while

general users are users used by the application system.

For security reasons, administrator users and general users need to be used

differently according to the usage purpose.

 Creating a user

An administrator user can register or delete a gsadm, and the information is

saved in the password file of the definition file directory as a GridDB resource.

As an administrator user is saved/managed in a local file of the OS, it has to be

placed so that the settings are the same in all the nodes constituting the

cluster. In addition, administrator users need to be set up prior to starting the

GridDB server. After the GridDB server is started, administrative users are not

valid even if they are registered.

A general user can be created after an administrator user starts cluster

operations in GridDB. A general user cannot be registered before the start of

cluster services. A general user can only be registered using an operating

command against a cluster as it is created after a cluster is composed in

GridDB and maintained as management information in the GridDB database.

Copyright © 2013-2016 TOSHIBA CORPORATION

GridDB users

Since information is not communicated automatically among clusters, an

administrator user needs to make the same settings in all the nodes and

perform operational management such as determining the master

management node of the definition file and distributing information from the

master management node to all the nodes that constitute the cluster.

 Rules when creating a user

There are naming rules to be adopted when creating a user name.

o Administrator user: Specify a user starting with “gs#”. After “gs#”, the

name should be composed of only alphanumeric characters and the

underscore mark. Since the name is not case-sensitive, gs#manager

and gs#MANAGER cannot be registered at the same time.

o General user: Specify using alphanumeric characters and the

underscore mark. However, the first character cannot be a number. In

addition, since the name is not case-sensitive, user and USER cannot

Copyright © 2013-2016 TOSHIBA CORPORATION

be registered at the same time. System and admin users cannot be

created as default administrator users.

o Password: No restrictions on the characters that can be specified.

A string consisting of up to 64 characters can be specified for the user name

and password.

4.2.3 Usable function

The operations that can be carried out by an administrator and a general user are

shown below. Among the operations, commands which can be executed by a gsadm

without using a GridDB user are marked with “✓✓”.

Operations Operating

details

Operating

tools used

gsadm Administrator

user

General

user

Node operations Starting a node gs_startnode

/gs_sh

✓ ✗

 Stopping a node gs_stopnode

/gs_sh

✓ ✗

Cluster

operations

Building a cluster gs_joincluster

/gs_sh

✓ ✗

 Adding a note to

a cluster

gs_addcluster

/gs_sh

✓ ✗

 Detaching a node

from a cluster

gs_leavecluster

/gs_sh

✓ ✗

 Stopping a

cluster

gs_stopcluster

/gs_sh

✓ ✗

User

management

Registering an

administrator

gs_adduser

✓✓ ✗ ✗

Copyright © 2013-2016 TOSHIBA CORPORATION

Operations Operating

details

Operating

tools used

gsadm Administrator

user

General

user

user

 Deleting an

administrator

user

gs_deluser

✓✓ ✗ ✗

 Changing the

password of an

administrator

user

gs_passwd

command
✓✓ ✗ ✗

 Creating a

general user

gs_sh
✓ ✗

 Deleting a

general user

gs_sh
✓ ✗

 Changing the

password of a

general user

gs_sh
✓ ✓:

Individual

only

Database

management

Creating/deleting

a database

gs_sh
✓ ✗

 Assigning/cancell

ing a user in the

database

gs_sh
✓ ✗

Data

Operations

Creating/deleting

a container or

table

gs_sh
✓ ✓: Only in

the DB of

the

individual

Copyright © 2013-2016 TOSHIBA CORPORATION

Operations Operating

details

Operating

tools used

gsadm Administrator

user

General

user

 Registering data

in a container or

table

gs_sh
✓ ✓:Only in

the DB of

the

individual

 Searching for a

container or table

gs_sh
✓ ✓: Only in

the DB of

the

individual

 Search

operations in a

container or table

gs_sh
✓ ✓: Only in

the DB of

the

individual

System status

management

Acquiring system

information

gs_stat
✓ ✗

4.2.4 Database and user

Access to a cluster database (hereinafter known as cluster database) in GridDB can be

separated on a user basis. The separation unit is known as a database. The following

is a cluster database in the initial state.

 public

o The database can be accessed by all administrator user and general

users.

o This database is used when connected without specifying the database

at the connection point.

Multiple databases can be created in a cluster database. Creation of databases and

assignment to users are carried out by an administrator user.

Copyright © 2013-2016 TOSHIBA CORPORATION

The rules for creating a database are as shown below.

 The maximum no. of users and the maximum no. of databases that can be

created in a cluster database is 128.

 A string consisting of alphanumeric characters and the underscore mark can be

specified for the database. However, the first character cannot be a number.

 A string consisting of 64 characters can be specified for the database name.

 Although the case sensitivity of the database name is maintained, a database

which has the same name when it is not case-sensitive cannot be created.

 “public” and “information_schema” cannot be specified for default DB.

Only assigned general users and administrator users can access the database.

Administrator user can access all databases. The following rules apply when assign a

general user to a database.

 Only 1 general user can be assigned to 1 database

 Multiple databases can be assigned to 1 user

Database and users

The rules for creating a database are as shown below.

Copyright © 2013-2016 TOSHIBA CORPORATION

 The maximum no. of users and the maximum no. of databases that can be

created in a cluster database is 128.

 Specify using alphanumeric characters and the underscore mark. However,

the first character cannot be a number. In addition, since the name is not

case-sensitive, database and DATABASE cannot be registered at the same

time.

4.3 Data management function

To register and search for data in GridDB, a container or table (NewSQL products

only) needs to be created to store the data. This section describes the data types that

can be registered in a container or table, data size, index and data management

functions.

The naming rules for containers and tables are the same as those for databases..

 A string consisting of alphanumeric characters and the underscore mark can be

specified. However, the first character cannot be a number.

 Although the case sensitivity of the name is maintained, a container (table)

which has the same name when it is not case-sensitive cannot be created.

4.3.1 Container data type

There are 2 container data types.

A timeseries container is a data type which is suitable for managing hourly data

together with the occurrence time while a collection is suitable for managing a

variety of data.

The schema can be set in a container.

The basic data types that can be registered in a container are the basic data type

and array data type.

 Basic data types

Describes the basic data types that can be registered in a container. A basic

data type cannot be expressed by a combination of other data types.

Copyright © 2013-2016 TOSHIBA CORPORATION

Data type Description

BOOLEAN True or false

STRING Composed of an arbitrary number of characters using the

unicode code point

BYTE Integer value from -2^{7} to 2^{7}-1 (8 bits)

SHORT Integer value from -2^{15} to 2^{15}-1 (16 bits)

INTEGER Integer value from -2^{31} to 2^{31}-1 (32 bits)

LONG Integer value from -2^{63} to ら 2^{63}-1 (64 bits)

FLOAT Single-precision data type (32 bits) Floating-point number

defined in IEEE754

DOUBLE Double-precision data type (64 bits) Floating-point number

defined in IEEE754

TIMESTAMP Data type expressing the date and time Data format maintained

in the database is UTC, and accuracy is in milliseconds

GEOMETRY Data type to represent a space structure

BLOB Data type for binary data such as images, audio, etc.

 The following restrictions apply to the size of the data that can be managed for

STRING, GEOMETRY and BLOB data. The restriction value varies according to

the block size which is the input/output unit of the database in the GridDB

definition file (gs_node.json).

Data type Block size (64KB) Block size (1MB)

STRING Maximum 31KB (equivalent to

UTF-8 encode)

Maximum 128KB (equivalent to

UTF-8 encode)

GEOMETRY Maximum 31KB (equivalent to Maximum 128KB (equivalent to

Copyright © 2013-2016 TOSHIBA CORPORATION

Data type Block size (64KB) Block size (1MB)

the internal storage format) the internal storage format)

BLOB Maximum 127MB Maximum 1GB

 HYBRID

A data type composed of a combination of basic data types that can be

registered in a container. The only hybrid data type in the current version is an

array.

o ARRAY

Expresses an array of values. Among the basic data types, only GEOMETRY

and BLOB data cannot be maintained as an array. The restriction on the data

volume that can be maintained in an array varies according to the block size of

the database.

Data type Block size (64KB) Block size (1MB)

Number of arrays 4000 65000

[Memo]

The following restrictions apply to TQL operations in an array column.

o Although the i-th value in the array column can be compared,

calculations (aggregation) cannot be performed on all the elements.

 *(Example) When column A is an array and assumed to be defined

o The elements in an array such as select * where ELEMENT (0, column

A) > 0 can be specified and compared. However, the variable in the

ELEMNT "0" section cannot be specified.

o Aggregation such as select SUM (column A) cannot be carried out.

Copyright © 2013-2016 TOSHIBA CORPORATION

4.3.2 Container ROWKEY

A ROWKEY is the data set in the row of a container. The uniqueness of a row with a set

ROWKEY is guaranteed.

A ROWKEY can be set in the first column of the row. (This is set in Column No. 0 since

columns start from 0 in GridDB.)

 For a timeseries container

o ROWKEY is a TIMESTAMP

o Must be specified.

 For a collection

o A ROWKEY is either a STRING, INTEGER, LONG or TIMESTAMP column.

o Need not be specified.

A default index prescribed in advance according to the column data type can be set in

a column set in ROWKEY.

In the current version, the default index of all STRING, INTEGER, LONG or TIMESTAMP

data that can be specified in a ROWKEY is the TREE index.

4.3.3 Container index

A condition-based search can be processed quickly by creating an index for the

columns of a container.

There are 3 types of index - hash index (HASH), tree index (TREE) and space index

(SPATIAL). A hash index is used in an equivalent-value search when searching with a

query in a container. Besides equivalent-value search, a tree index is used in

comparisons including the range (bigger/same, smaller/same etc.).

The index that can be set differs depending on the container type and column data

type.

 HASH INDEX

o An equivalent value search can be conducted quickly but this is not

suitable for searches that read the rows sequentially.

Copyright © 2013-2016 TOSHIBA CORPORATION

o Columns of the following data type can be set in a collection. Cannot be

set in a timeseries container.

 STRING

 BOOL

 BYTE

 SHORT

 INTEGER

 LONG

 FLOAT

 DOUBLE

 TIMESTAMP

 Besides equivalent-value search, a tree index

o is used in comparisons including the range (bigger/same, smaller/same

etc.).

o This can be used for columns of the following data type in any type of

container, except for columns corresponding to a rowkey in a

timeseries container.

 STRING

 BOOL

 BYTE

 SHORT

 INTEGER

 LONG

 FLOAT

 DOUBLE

 TIMESTAMP

 SPACE INDEX

o Can be used for only GEOMETRY columns in a collection. This is

specified when conducting a spatial search at a high speed.

Although there are no restrictions on the no. of indices that can be created in a

container, creation of an index needs to be carefully designed. An index is updated

when the rows of a configured container are inserted, updated or deleted. Therefore,

when multiple indices are created in a column of a row that is updated frequently, this

will affect the performance in insertion, update or deletion operations.

An index is created in a column as shown below.

Copyright © 2013-2016 TOSHIBA CORPORATION

 A column that is frequently searched and sorted.

 A column that is frequently used in the condition of the WHERE section of TQL

 High cardinality column (containing few duplicated values)

4.3.4 Timeseries container

In order to manage data from a sensor etc. occurring at a high frequency, data is

placed in accordance with the data placement algorithm (TDPA: Time Series Data

Placement Algorithm) making maximum effective use of the memory . In a timeseries

container, memory is allocated while classifying internal data by its periodicity. When

hint information is given in an affinity function, the placement efficiency rises further.

Expired data in a timeseries container is released at almost zero cost while being

expelled to a disk where necessary.

A timeseries container has a TIMESTAMP ROWKEY.

 Expiry release function

In a timeseries data, an expiry release function and the data retention period

can be set so that when the period set is exceeded, the data will be released

(deleted).

The settings refer to the deadline unit and deadline, and no. of divisions when

the data is released during container creation. The settings of a timeseries

container that has been created cannot be changed.

The deadline can be set in day/hour/minute/sec/millisec units. The year unit

and month unit cannot be specified. The current time used in determining

whether the valid period has expired is dependent on the execution

environment of each node in GridDB. Therefore, if the GridDB node time is

faster than the client time due to a network delay or a deviation in the time

setting of the execution environment, or if a row prior to expiry is no longer

accessible, or conversely if only the client time is faster, the expired row may

be accessible.

We recommend that a value larger than the minimum required time is set in

order to avoid unintended loss of rows.

An expired row is deemed as non-existent and is no longer subject to row

operations such as search and update.

Copyright © 2013-2016 TOSHIBA CORPORATION

Expired rows are physically deleted based on the number of divisions for the

valid period (number of divisions when the data is deleted).

For example, if the valid period is 720 days and the specified number of

divisions is 36, although data access will be immediately disabled upon passing

the 720-day mark, the data will only be deleted after 20 days have passed

from the 720 days. 20 days’ worth of physical data is deleted together.

The number of divisions is specified when creating a container.

 Calculation of a timeseries container

There are calculations to perform time correction in addition to calculations to

aggregate containers in a timeseries container.

o In an aggregate operation on an aggregate operation container, specify

the start and end time and perform the aggregate operation on a row

set or specific column.

o Aggregate operation specific to a timeseries container

In a timeseries container, the calculation is performed with the data

weighted at the time interval of the sampled data. In other words, if the

time interval is long, the calculation is carried out assuming the value is

continued for an extended time.

4.3.5 Selection and interpolation of a timeseries container

Time data may deviate slightly from the expected time due to the timing of the

collection and the contents of the data to be collected. Therefore when conducting a

search using time data as a key, a function that allows data around the specified time

to be acquired in also required.

4.3.6 Affinity function

An affinity is a function to connect related data. There are 2 types of affinity function

in GridDB, data affinity and node affinity.

 Data affinity function

A data affinity is a function to raise the memory hit rate by arranging highly

correlated data in the same block and localizing data access. By raising the

Copyright © 2013-2016 TOSHIBA CORPORATION

memory hit ratio, the no. of memory mishits during data access can be

reduced and the throughput can be improved. By using data affinity, even

machines with a small memory can be operated effectively.

The data affinity settings provide hint information as container properties

when creating a container. The characters that can be specified for the hint

information are restricted by naming rules that are similar to those for the

container name. Data with the same hint information is placed in the same

block as much as possible.

Data affinity hints are set separately by the data update frequency and

reference frequency. For example, consider the data structure when system

data is registered, referenced or updated by the following operating method in

a system that samples and refers to the data on a daily, monthly or annual

basis in a monitoring system.

1. Data in minutes is sent from the monitoring device and saved in the

container created on a monitoring device basis.

2. Since data reports are created daily, one day’s worth of data is

aggregated from the data in minutes and saved in the daily container

3. Since data reports are created monthly, daily container data is

aggregated and saved in the monthly container

4. Since data reports are created annually, monthly container data is

aggregated and saved in the annual container

5. The current space used (in minutes and days) is constantly updated

and displayed in the display panel.

In GridDB, instead of occupying a block in a container unit, data close to the

time is placed in the block. Therefore, refer to the daily container in 2., perform

monthly aggregation and use the aggregation time as a ROWKEY. The data in

3. and the data in minutes in 1. may be saved in the same block.

If the memory is small and the data is so big that all the monitoring data

cannot be stored in the memory, when the aggregation process in 4. is carried

out on an annual basis, the block is divided and data placed in 3. is placed in

the memory. As a result, data that you want to monitor may get swapped out

Copyright © 2013-2016 TOSHIBA CORPORATION

as the data read may not be the latest e.g. data in 1. which is not required all

the time is driven out of the memory.

In this case, by providing hints to the container according to the container

access frequency using a data affinity e.g. on a minute, daily or monthly basis,

etc., data with a low access frequency and data with a high access frequency is

separated into different blocks when the data is placed.

In this way, data can be placed to suit the usage scene of the application by the

data affinity function.

Data Affinity

 Node affinity function

Node affinity is a function to reduce the network load when accessing data by

arranging highly correlated containers and tables in the same node. Although

there is no container JOIN operation In the TQL of a NoSQL product, a table

JOIN operation can be described in the SQL of a SQL product. When joining a

table, the network access load of a table placed in another node of the cluster

can be reduced. In addition, since concurrent processing using multiple nodes

is no longer possible, there is no effect on shortening the turnaround time.

Nonetheless, throughput may still rise due to a reduction in the network load.

Copyright © 2013-2016 TOSHIBA CORPORATION

Placement of container/table based on node affinity

To use the node affinity function, hint information is given in the container

name when the container is created. A container with the same hint

information is placed in the same partition. Specify the container name as

shown below.

o Container name@node affinity hint information

The naming rules for node affinity hint information are the same as the naming

rules for the container name.

4.4 Transaction processing

GridDB supports transaction processing on a container basis and ACID characteristics

which are generally known as transaction characteristics. The supporting functions in

a transaction process are explained in detail below.

4.4.1 Starting and ending a transaction

When a row search or update etc. is carried out on a container, a new transaction is

started and this transaction ends when the update results of the data are committed

or aborted.

Copyright © 2013-2016 TOSHIBA CORPORATION

[Memo]

 A commit is a process to confirm transaction information under processing to

perpetuate the data.

o In GridDB, updated data of a transaction is stored as a transaction log

by a commit process, and the lock that had been maintained will be

released.

 An abort is a process to rollback (delete) all transaction data under processing.

o In GridDB, all data under processing are discarded and retained locks

will also be released.

The initial action of a transaction is set in autocommit.

In autocommit, a new transaction is started every time a container is updated (data

addition, deletion or revision) by the application, and this is automatically committed

at the end of the operation. A transaction can be committed or aborted at the

requested timing by the application by turning off autocommit.

A transaction recycle may terminate in an error due to a timeout in addition to being

completed through a commit or abort. If a transaction terminates in an error due to a

timeout, the transaction is aborted. The transaction timeout is the elapsed time from

the start of the transaction. Although the initial value of the transaction timeout time

is set in the definition file (gs_node.json), it can also be specified as a parameter when

connecting to GridDB on an application basis.

4.4.2 Transaction consistency level

There are 2 types of transaction consistency levels, immediate consistency and

eventual consistency. This can also be specified as a parameter when connecting to

GridDB for each application. The default setting is immediate consistency.

 Immediate consistency: Container update results from other clients are

reflected immediately at the end of the transaction concerned. As a result, the

latest details can be referenced all the time.

 Eventual consistency: Container update results from other clients may not be

reflected immediately at the end of the transaction concerned. As a result,

there is a possibility that old details may be referred to.

Copyright © 2013-2016 TOSHIBA CORPORATION

Immediate consistency is valid in update operations and read operations. Eventual

consistency is valid in read operations only. For applications which do not require the

latest results to be read all the time, the reading performance improves when

eventual consistency is specified.

4.4.3 Transaction isolation level

Conformity of the database contents need to be maintained all the time. When

executing multiple transaction simultaneously, the following events will generally

surface as issues.

 An event which involves uncommitted data written by a dirty read transaction

being read by another transaction.

 An event which involves data read previously by a non-recurrent read

transaction becoming unreadable.

Even if you try to read the data read previously by a transaction again, the previous

data can no longer be read as the data has already been updated and committed by

another transaction (the new data after the update will be read instead).

 An event in which the inquiry results obtained previously by a phantom read

transaction can no longer be acquired.

Even if you try to execute an inquiry executed previously in a transaction again in the

same condition, the previous results can no longer be acquired as the data satisfying

the inquiry condition has already been changed, added and committed by another

transaction (new data after the update will be acquired instead).

In GridDB, “READ_COMMITTED” is supported as a transaction isolation level. In

READ_COMMITTED, the latest data confirmed data will always be read.

When executing a transaction, this needs to be taken into consideration so that the

results are not affected by other transactions. The isolation level is an indicator from

1 to 4 that shows how isolated the executed transaction is from other transactions

(the extent that consistency can be maintained).

The 4 isolation levels and the corresponding possibility of an event raised as an issue

occurring during simultaneous execution are as follows.

Copyright © 2013-2016 TOSHIBA CORPORATION

Isolation level Dirty read Non-recurrent

reading

Phantom read

READ_UNCOMMITTED Possibility of

occurrence

Possibility of

occurrence

Possibility of

occurrence

READ_COMMITTED Safe Possibility of

occurrence

Possibility of

occurrence

REPEATABLE_READ Safe Safe Possibility of

occurrence

SERIALIZABLE Safe Safe Safe

In READ_COMMITED, if data read previously is read again, data that is different from

the previous data may be acquired, and if an inquiry is executed again, different

results may be acquired even if you execute the inquiry with the same search

condition. This is because the data has already been updated and committed by

another transaction after the previous read.

In GridDB, data that is being updated by MVCC is isolated.

4.4.4 MVCC

In order to realize READ_COMMITTED, “MVCC (Multi-Version Concurrency Control)”

has been adopted.

MVCC is a processing method that refers to the data prior to being updated instead of

the latest data that is being updated by another transaction when a transaction sends

an inquiry to the database. System throughput improves as the transaction can be

executed concurrently by referring to the data prior to the update.

When the transaction process under execution is committed, other transactions can

also refer to the latest data.

Copyright © 2013-2016 TOSHIBA CORPORATION

MVCC

4.4.5 Lock

There is a data lock mechanism to maintain the consistency when there are competing

container update requests from multiple transactions.

The lock granularity differs depending on the type of container. In addition, the lock

range changes depending on the type of operation in the database.

 Lock granularity

o A timeseries container is a data structure to hold data that is being

generated with each passing moment and rarely includes cases in

which the data is updated at a specific time.

o Collection data may include cases in which an existing ROW data is

updated as it manages data just like a RDB table.

Based on the use case analysis of such a container, the lock granularity

(smallest unit) adopted in GridDB is as follows. The lock granularity of a

collection which is updated relatively more frequently is a ROW in order to

improve the concurrent execution performance.

o Collection・・・Lock by ROW unit.

Copyright © 2013-2016 TOSHIBA CORPORATION

o Timeseries container・・・Locked by ROW collection

 In a row set, multiple rows are placed in a timeseries container

by dividing a block into several data processing units. This data

processing unit is known as a row set. It is a data management

unit to process a large volume of timeseries containers at a high

speed even though the data granularity is coarser than the lock

granularity in a collection.

The lock granularity of a collection which is updated randomly more frequently

compared to a timeseries container collection adopts a row unit in order to

improve the concurrent execution performance.

 Lock range by database operations

Container operations are not limited to just data registration and deletion but

also include schema changes accompanying a change in data structure, index

creation to improve speed of access, and other operations. The range of the

lock differs between an operation on a specific row of the container and an

operation on all rows of the container.

o Lock equivalent of a container unit

 Index operations (createIndex/dropIndex)

 Container deletion

 Schema change

o Lock in accordance with the lock granularity

 insert/update/remove

 get(forUpdate)

In a data operation on a row, a lock following the lock granularity is

ensured.

 If there is competition in securing the lock, the subsequent transaction will be

put in standby for securing the lock until the earlier transaction has been

completed by a commit or rollback process and the lock is released.

 A standby for securing a lock can also be cancelled by a timeout besides

completing the execution of the transaction.

Copyright © 2013-2016 TOSHIBA CORPORATION

4.4.6 Data perpetuation

Data registered or updated in a container or table is perpetuated in the disk or SSD,

and protected from data loss when a node failure occurs. There are 2 types of

transaction log process, one to synchronize data in a data update and write the

updated data sequentially in a transaction log file, and the other is a checkpoint

process to store updated data in the memory regularly in the database file on a block

basis.

To write to a transaction log, either one of the following settings can be made in the

node definition file.

 0: SYNC

 An integer value of 1 or higher1: DELAYED_SYNC

In the "SYNC" mode, log writing is carried out synchronously every time an update

transaction is committed or aborted. In the "DELAYED_SYNC" mode, log writing

during an update is carried out at a specified delay of several seconds regardless of

the update timing. Default value is "1 (DELAYED_SYNC 1 sec)".

When "SYNC" is specified, although the possibility of losing the latest update details

when a node failure occurs is lower, the performance is affected in systems that are

updated frequently.

On the other hand, if “DELAYED_SYNC" is specified, although the update performance

improves, any update details that have not been written in the disk when a node

failure occurs will be lost.

If there are 2 or more replicas in a raster configuration, the possibility of losing the

latest update details when a node failure occurs is lower even if the mode is set to

"DELAYED_SYNC" as the other nodes contain replicas. Consider setting the mode to

"DELAYED_SYNC" as well if the update frequency is high and performance is required.

In a checkpoint, the update block is updated in the database file. A checkpoint process

operates at the cycle set on a node basis. A checkpoint cycle is set by the parameters

in the node definition file. Initial value is 1200 sec (20 minutes).

Copyright © 2013-2016 TOSHIBA CORPORATION

By raising the checkpoint execution cycle figure, data perpetuation can be set to be

carried out in a time band when there is relatively more time to do so e.g. by

perpetuating data to a disk at night and so on. On the other hand, when the cycle is

lengthened, the disadvantage is that the number of transaction log files that have to

be rolled forward when a node is restarted outside the system process increases,

thereby increasing the recovery time.

Data that is updated in a checkpoint execution is pooled and maintained in a memory

separate from the checkpoint writing block. Set checkpoint concurrent execution for

the checkpoint to carry out the checkpoint quickly. If concurrent execution is set,

concurrent processing is carried out until the number of transactions executed

simultaneously is the same.

CheckPoint

Copyright © 2013-2016 TOSHIBA CORPORATION

4.4.7 Timeout process

The timeout details that can be set differ between a NoSQL I/F and a NewSQL I/F.

 NoSQL timeout

There are 2 types of timeout in a NoSQL that the application developer is kept

informed of. There are 2 types of timeout, a transaction timeout that is related

to the processing time limit of a transaction and a failover timeout that is

related to the retry time of a recovery process when a failure occurs.

o TransactionTimeout

The timer is started when access to the container subject to the process

begins, and a timeout occurs when the specified time is exceeded.

Timeout time prepared to delete the lock and memory from a

transaction possessing an extended update lock (application searches

for data in the update mode and does not delete the data when the lock

is maintained) or a transaction maintaining a large amount of results

for an extended time (application does not delete the memory of the

cluster system for an extended time) and so on. Application is aborted

upon reaching the transaction timeout.

Besides the node definition file, a transaction timeout can also be

specified in the application with a parameter during cluster connection.

The specification in the application is prioritized. The default

transaction timeout setting is 0 sec. 0 sec means that there is no

timeout specified. In order to monitor an extended transaction, set the

timeout time to meet the system requirements.

o FailoverTimeout

Timeout time during an error retry when a client connected to a node

constituting a cluster which failed connects to a replacement node. If a

new connection point is discovered in the retry process, the client

application will not be notified of the error. Default value is 5 minutes.

This can also be specified in the application by a parameter during

cluster connection. Failover timeout is also used in timeout during

initial connection.

Copyright © 2013-2016 TOSHIBA CORPORATION

 Both the transaction timeout and failover timeout can be set when connecting

to a cluster using a GridDB object in the Java API or C API. See “GridDB API

Reference” (GridDB_API_Reference.html) for details.

4.4.8 Replication function

Data replicas are created on a partition basis in accordance with the number of

replications set by the user among multiple nodes constituting a cluster.

A process can be continued non-stop even when a node failure occurs by maintaining

replicas of the data among scattered nodes. In the client API, when a node failure is

detected, the client automatically switches access to another node where the replica

is maintained.

The default number of replication is 2, allowing data to be replicated twice when

operating in a cluster configuration with multiple nodes.

When there is an update in a container, the owner node (the node having the master

replica) among the replicated partitions is updated.

There are 2 ways of subsequently reflecting the updated details from the owner node

in the backup node.

 Replication is carried out without synchronizing with the timing of the

non-synchronous replication update process. Update performance is better for

quasi-synchronous replication but the availability is worse.

 Although replication is carried out synchronously at the quasi-synchronous

replication update process timing, no appointment is made at the end of the

replication. Availability is excellent but performance is inferior.

If performance is more important than availability, set the mode to non-synchronous

replication and if availability is more important, set it to quasi-synchronous

replication.

[Memo] The number of replications is set in the cluster definition file (gs_cluster.json)

/cluster/replicationNum. Synchronous settings of the replication are set in the cluster

definition file (gs_cluster.json) /transaction/replicationMode.

Copyright © 2013-2016 TOSHIBA CORPORATION

4.5 Trigger function

A trigger function is an automatic notification function when an operation (add/update

or delete) is carried out on the row data of a container. Event notifications can be

received without the need to poll and monitor database updates in the application

system.

There are 2 ways of notifying the application system.

 Java Messaging Service(JMS)

 REST

Action of a trigger function

When a trigger occurs, the application can also be notified of the column data in a row

data subject to the operation. As to which column data to notify, this is set when the

trigger is set in the container. In addition, multiple triggers can also be set in a single

container.

The items that can be specified with a trigger setting are as follows.

 Notification event condition (add/update or delete)

 Notification method (JMS or REST)

 Notification column

Copyright © 2013-2016 TOSHIBA CORPORATION

4.6 Failure process function

In GridDB, recovery for a single point failure is not necessary as replicas of the data

are maintained in each node constituting the cluster. The following action is carried

out when a failure occurs in GridDB.

1. When a failure occurs, the failure node is automatically isolated from the

cluster.

2. Failover is carried out in the backup node in place of the isolated failure node.

3. Partitions are rearranged autonomously as the number of nodes decreases as

a result of the failure (replicas are also arranged).

A node that has been recovered from a failure can be incorporated online into a cluster

operation. A node can be incorporated into a cluster which has become unstable due

to a failure using the gs_joincluster command. As a result of the node incorporation,

the partitions will be rearranged autonomously and the node data and load balance

will be adjusted.

In this way, although advance recovery preparations are not necessary in a single

failure, recovery operations are necessary when operating in a single configuration or

when there are multiple overlapping failures in the cluster configuration.

When operating in a cloud environment, even when physical disk failure or processor

failure is not intended, there may be multiple failures such as a failure in multiple

nodes constituting a cluster, or a database failure in multiple nodes.

4.6.1 Type and treatment of failures

An overview of the failures which occur and the treatment method is shown in the

table below.

A node failure refers to a situation in which a node has stopped due to a processor

failure or an error in a GridDB server process, while a database failure refers to a

situation in which an error has occurred in accessing a database placed in a disk.

Copyright © 2013-2016 TOSHIBA CORPORATION

Configuration of

GridDB

Type of

failure

Action and treatment

Single configuration Node failure Although access from the application is no longer possible, data in a

transaction which has completed processing can be recovered

simply by restarting the transaction, except when caused by a node

failure. Recovery by another node is considered when the node

failure is prolonged.

Single configuration Database

failure

The database file is recovered from the backup data in order to

detect an error in the application.

Recovered at the backup point.

Cluster configuration Single node

failure

The error is covered up in the application, and the process can

continue in nodes with replicas. Recovery operation is not

necessary in a node where a failure has occurred.

Cluster configuration Multiple

node failure

If both owner/backup partitions of a replica exist in a failure target

node , the cluster will operate normally even though the subject

partitions cannot be accessed.

Except when caused by a node failure, data in a transaction which

has completed processing can be recovered simply by restarting

the transaction. Recovery by another node is considered when the

node failure is prolonged.

Cluster configuration Single

database

failure

Since data access will continue through another node constituting

the cluster when there is a database failure in a single node, the

data can be recovered simply by changing the database

deployment location to a different disk, and then starting the node

again.

Cluster configuration Multiple

database

failure

A partition that cannot be recovered in a replica needs to be

recovered at the point backup data is sampled from the latest

backup data.

Copyright © 2013-2016 TOSHIBA CORPORATION

4.6.2 Client failover

If a node failure occurs when operating in a cluster configuration, the partitions

(containers) placed in the failure node cannot be accessed. At this point, a client

failover function to automatically connect to the backup node again and continue the

process is activated in the client API. To automatically perform a failover

countermeasure in the client API, the application developer does not need to be aware

of the error process in the node.

However, due to a network failure or simultaneous failure of multiple nodes, an error

may also occur and access to the target application operations may not be possible.

Depending on the data to be accessed, the following points need to be considered in

the recovery process after an error occurs.

 For a collection in which the timeseries container or row key is defined, the

data can be recovered by executing the failed operation or transaction again.

 For a collection in which the row key is not defined, the failed operation or

transaction needs to be executed again after checking the contents of the DB.

[Memo]

In order to simplify the error process in an application, it is recommended that the row

key be defined when using a collection. If the data cannot be uniquely identified by a

single column value but can be uniquely identified by multiple column values, a

column having a value that links the values of the multiple columns is recommended

to be set as the row key so that the data can be uniquely identified.

4.6.3 Event log function

An event log is a log to record system operating information and messages related to

event information e.g. exceptions which occurred internally in a GridDB node etc.

An event log is created with the file name GridStore-%Y%m%d-n.log in the directory

shown in the environmental variable eGS_LOG (Example: GridStore-20150328-5.log).

The file is switched when the node is restarted or when the log output size exceeds a

fixed size.

Copyright © 2013-2016 TOSHIBA CORPORATION

Output format of event log is as follows.

 (Date and time) (host name) (thread no.) (log level) (category) [(error trace

no.): (error trace no. and name)] (message) < (base64 detailed information:

Detailed information for problem analysis in the support service)>

An overview of the event which occurred can be found in the error trace no.

and name. In addition, measures to deal with the problems can be searched

using the error trace no. in the troubleshooting guide. A output example of an

event log is shown below.

2014-11-12T10:35:29.746+0900 TSOL1234 8456 ERROR TRANSACTION_SERVICE

[10008:TXN_CLUSTER_NOT_SERVICING] (nd={clientId=2, address=127.0.0.1:52719},

pId=0, eventType=CONNECT, stmtId=1)

<Z3JpZF9zdG9yZS9zZXJ2ZXIvdHJhbnNhY3Rpb25fc2VydmljZS5jcHAgQ29ubmVjdEhhbmRsZX

I6OmhhbmRsZUVycm9yIGxpbmU9MTg2MSA6IGJ5IERlbnlFeGNlcHRpb24gZ3JpZF9zdG9yZS9z

ZXJ2ZXIvdHJhbnNhY3Rpb25fc2VydmljZS5jcHAgU3RhdGVtZW50SGFuZGxlcjo6Y2hlY2tFeGVjd

XRhYmxlIGxpbmU9NjExIGNvZGU9MTAwMDg=>

4.7 Data access

To access GridDB data, there is a need to develop an application using JDBC or ODBC

for NoSQL products’ client API (Java, C language) or NewSQL products. Data can be

accessed simply by connecting to the cluster database of GridDB without having to

take into account position information on where the container or table is located in the

cluster database. The application system does not need to consider which node

constituting the cluster the container is placed in.

In the GridDB API, when connecting to a cluster database initially, placement hint

information of the container is retained (cached) on the client end together with the

node information (partition).

Communication overheads are kept to a minimum as the node maintaining the

container is connected and processed directly without having to access the cluster to

search for nodes that have been placed every time the container used by the

application is switched.

Copyright © 2013-2016 TOSHIBA CORPORATION

Although the container placement changes dynamically due to the rebalancing

process in GridDB, the position of the container is transmitted as the client cache is

updated regularly. For example, even when there is a node mishit during access from

a client due to a failure or a discrepancy between the regular update timing and

re-balancing timing, relocated information is automatically acquired to continue with

the process.

4.7.1 TQL and SQL

TQL in NoSQL products and SQL-92 compliant SQL in NewSQL products are supported

as database access languages.

 What is TQL

A simplified SQL prepared for NoSQL products. The support range is limited to

functions such as search, aggregation, etc., using a container as a unit. TQL is

employed by using the client API (Java, C language) of NoSQL products.

 What is SQL?

Standardization of the language specifications is carried out in ISO to support

the interface for defining and performing data operations in conformance with

SQL-92 in GridDB. SQL uses the ODBC/JDBC of the new SQL product.

See “GridDB API Reference” (GridDB_API_Reference.html) for details on TQL, and

“GridDB/NewSQL DB SQL Reference” (GridDB_NewSQL_SQL_Reference.pdf) for

details on SQL.

4.7.2 API

Characteristic functions among the API provided by GridDB are explained. An

interface to quickly process event information that occurs occasionally is available in

NoSQL

When a large volume of events is sent to the database server every time an event

occurs, the load on the network increases and system throughput does not increase.

Significant impact will appear especially when the communication line bandwidth is

narrow. Multi-processing is available in NoSQL to process multiple row registrations

Copyright © 2013-2016 TOSHIBA CORPORATION

for multiple containers and multiple inquiries (TQL) to multiple containers with a

single request. The overall throughput of the system rises as the database server is

not accessed frequently.

An example is given below.

 Multiput

A container is prepared for each sensor name as a process to register event

information from multiple sensors in the database. The sensor name and row

array of the timeseries event of the sensor are created and a list (map)

summarizing the data for multiple sensors is created. This list data is

registered in the GridDB database each time the API is invoked.

In the API of a multi- registration process, the communication process is

optimized by consolidating requests for 1 or more containers to a node in

GridDB formed by multiple clusters. In addition, multi-registrations are

processed quickly without performing MVCC when executing a transaction.

In a multiput, transactions are committed automatically. Data is confirmed on

a single case basis.

Multiput process

Copyright © 2013-2016 TOSHIBA CORPORATION

 Multi-query (fetchAll)

Instead of executing multiple queries to a sensor, these can be executed in a

single query by consolidating event information of the sensor. For example,

this is most suitable for acquiring aggregate results such as the daily maximum,

minimum and average values of data acquired from a sensor, or data of a row

set having the maximum or minimum value, or data of a row set meeting the

specified condition.

fetchAll process

 Multiget

Batch data of multiple devices with the specified Rowkey can be acquired using

a process to acquire event information of the sensor and so on. Set the

condition for data acquisition in the RowkeyPredicate object to acquire data

from multiple devices together.

In a RowKeyPredicate object, the acquisition condition is set in either one of

the 2 formats below.

o Specify the acquisition range

o Specified individual value

Copyright © 2013-2016 TOSHIBA CORPORATION

Multiget process

4.8 Operating function

GridDB has the following operating functions. This section provides an overview of the

functions. See “GridDB Operating Management Guide”

(GridDB_OperationGuide.html) for details on the operating functions.

Copyright © 2013-2016 TOSHIBA CORPORATION

5 parameters

Describes the parameters to control the operations in GridDB. In the GridDB

parameters, there is a node definition file to configure settings such as the setting

information and usable resources etc., and a cluster definition file to configure

operational settings of a cluster. Explains the meanings of the item names in the

definition file and the settings and parameters in the initial state.

The unit of the setting is set as shown below.

 The byte size can be specified in the following units: TB, GB, MB, KB, B, T, G,

M, K, or lowercase notations of these units Unit cannot be omitted unless

otherwise stated.

 Time can be specified in the following units: h, min, s, ms. Unit cannot be

omitted unless otherwise stated.

5.1 Cluster definition file（gs_cluster.json)

The same setting in the cluster definition file needs to be made in all the nodes

constituting the cluster. As the partitionNum and storeBlockSize parameters are

important parameters to determine the database structure, they cannot be changed

when GridDB is started after the system is built.

The cluster name is a parameter that must be set from V2.7 onwards.

The meanings of the various settings in the cluster definition file are explained below.

By adding an item name, items that are not included in the initial state can be

recognized by the system. Indicate whether the parameter can be changed and the

change timing in the change field.

 Change disallowed: Node cannot be changed once it has been started. The

database needs to be initialized if you want to change the setting.

 Start: Parameter can be changed by restarting all the nodes constituting the

cluster.

Copyright © 2013-2016 TOSHIBA CORPORATION

 Online: Parameters that are currently in operation online can be changed.

However, the contents in the definition file need to be manual amended as the

change details will not be perpetuated.

 Configuration of

GridDB

Initial

value

Meaning of parameters and limitation values change

/notificationAddress 239.0.0.1 Standard setting of a multi-cast address. This setting will become

valid if a parameter with the same cluster, transaction name is

omitted. If a different value is set, the address of the individual

setting is valid.

restart

/dataStore

/partitionNum

128 Specify a common multiple that will allow the number of

partitions to be divided and placed by the number of constituting

clusters Integer: Specify an integer that is 1 or higher and 10000

or lower.

Change

disallowed

/dataStore

/storeBlockSize

64KB Specify the disk I/O size. Either 64KB or 1MB can be specified.

Assume and set the data occurrence frequency. Cannot be

changed after server is started.

Change

disallowed

/cluster

/clusterName

NIL Specify the name for identifying a cluster. Mandatory input

parameter.

restart

/cluster

/replicationNum

2 No. of replicas. Partition is doubled if the no. of replicas is 2. restart

/cluster

/notificationAddress

239.0.0.1 Multi-cast address for cluster configuration restart

/cluster

/notificationPort

20000 Specify a value within a specifiable range as a multi-cast port no.

for a cluster configuration.

restart

/cluster

/notificationInterval

5sec Specify a multi-cast period of 1s or more, or 2^31s or less for the

cluster configuration.

restart

/cluster

/heartbeatInterval

5sec Specify a check period (heart beat period) of 1s or more, and less

than 2^31s, to check the node survival among clusters.

restart

Copyright © 2013-2016 TOSHIBA CORPORATION

 Configuration of

GridDB

Initial

value

Meaning of parameters and limitation values change

/cluster

/loadbalanceCheckInterval

180sec In order to adjust the load balance among nodes constituting the

cluster, specify a data sampling period of 1s or more, and less

than 2^31s, with the unit omitted when determining whether to

implement the balancing process or not.

restart

/sync

/timeoutInterval

30sec Timeout time during data synchronization among clusters If a

timeout occurs, the system load may be high, or a failure may

have occurred. Specify a value that is 1s or higher and less than

2^31s.

restart

/transaction

/notificationAddress

239.0.0.1 Multi-cast address that a client connects to initially. Master node

is notified in the client.

restart

/transaction

/notificationPort

31999 Multi-cast port that a client connects to initially. Specify a value

that is 1s or higher and less than 2^31s.

restart

/transaction

/notificationInterval

5sec Multi-cast period for a master to notify its clients. Specify a value

that is 1s or higher and less than 2^31s.

restart

/transaction

/replicationMode

0 Specify the data synchronization (replication) method when

updating the data in a transaction. Specify a string or integer,

"ASYNC"or 0 (non-synchronous), "SEMISYNC"or 1

(quasi-synchronous).

restart

/transaction

/replicationTimeoutInterval

10 sec Specify the timeout time for communications among nodes when

synchronizing data in a quasi-synchronous replication

transaction. Specify a value that is 1s or higher and less than

2^31s.

restart

/sql

/notificationAddress

239.0.0.1 Multi-cast address when the JDBC/ODBC client is connected

initially. Master node is notified in the client.

restart

/sql

/notificationPort

41999 Multi-cast port when the JDBC/ODBC client is connected initially.

Specify a value that is 1s or higher and less than 2^31s.

restart

/sql

/notificationInterval

5 sec Multi-cast period for a master to notify its JDBC/ODBC clients.

Specify a value that is 1s or higher and less than 2^31s.

restart

Copyright © 2013-2016 TOSHIBA CORPORATION

5.2 Node definition file (gs_node.json)

Default setting of the resources in nodes constituting a cluster. In an online operation,

there are also parameters whose values can be changed online from the resource,

access frequency, etc., that have been laid out. Conversely, note that there are also

values (concurrency) that cannot be changed once set.

The meanings of the various settings in the node definition file are explained below.

By adding an item name, items that are not included in the initial state can be

recognized by the system. Indicate whether the parameter can be changed and the

change timing in the change field.

 Change disallowed: Node cannot be changed once it has been started. The

database needs to be initialized if you want to change the setting.

 Start: Parameter can be changed by restarting all the nodes constituting the

cluster.

 Online: Parameters that are currently in operation online can be changed.

However, the contents in the definition file need to be manual amended as the

change details will not be perpetuated.

Specify the directory by specifying the full path or a relative path from the GS_HOME

environmental variable. For relative path, the initial directory of GS_HOME serves as

a reference point. Initial configuration directory of GS_HOME is /var/lib/gridstore.

Configuration of

GridDB

Initial value Meaning of parameters and limitation values change

/serviceAddress NIL Set the initial value of each cluster, transaction, sync service

address. The initial value of each service address can be set

by setting this address only without having to set the

addresses of the 3 items.

restart

/dataStore

/dbPath

data The deployment directory of the database file is specified by

the full path or a relative path

restart

Copyright © 2013-2016 TOSHIBA CORPORATION

Configuration of

GridDB

Initial value Meaning of parameters and limitation values change

/dataStore

/backupPath

backup Specify the backup file deployment directory path. restart

/dataStore

/storeMemoryLimit

1024MB Upper memory limit for data management online

/dataStore

/concurrency

1 Concurrency Change

disallowed

/dataStore

/logWriteMode

1 If the log writing mode period is -1 or 0, log writing is

performed at the end of the transaction. If it is 1 or more and

less than 2^31, log writing is performed at a period specified

in seconds

restart

/dataStore

/persistencyMode

1(NORMAL) In the perpetuation mode, the period that the update log file

is maintained during a data update is specified. Specify either

1 (NORMAL) or 2 (RETAINING_ALL_LOGS). For "NORMAL", a

transaction log file which is no longer required will be deleted

by the checkpoint. For "RETAINING_ALL_LOGS", all

transaction log files are retained. Default value is "1

(NORMAL)".

restart

/dataStore

/storeWarmStart

true (valid) Specify whether to save in-memory up to the upper limit of

the chunk memory during a restart.

restart

/dataStore

/affinityGroupSize

4 Number of affinity groups restart

/checkpoint

/checkpointInterval

1200 sec Checkpoint process execution period to perpetuate a data

update block in the memory

restart

/checkpoint

/checkpointMemoryLimit

1024MB Upper limit of special checkpoint write memory* Pool the

required memory space up to the upper limit when there is a

update transaction in the checkpoint.

online

/checkpoint

/useParallelMode

false (invalid) Specify whether to execute the checkpoint concurrently.

*The no. of concurrent threads is the same as the

concurrency.

restart

Copyright © 2013-2016 TOSHIBA CORPORATION

Configuration of

GridDB

Initial value Meaning of parameters and limitation values change

/checkpoint

/checkpointCopyInterval

100ms Output process interval when outputting a block with added

or updated data to a disk in a checkpoint process.

restart

/cluster

/serviceAddress

Follow the

higher order

“serviceAddress”

Standby address for cluster configuration restart

/cluster

/servicePort

10010 Standby port for cluster configuration restart

/sync

/serviceAddress

Follow the

higher order

“serviceAddress”

Specify the reception address for data synchronization

among the clusters.

restart

/sync

/servicePort

10020 Standby port for data synchronization restart

/system

/servicePort

Follow the

higher order

“serviceAddress”

Standby address for REST command restart

/system

/eventLogPath

10040 Standby port for REST command restart

/system

/eventLogPath

log Event log file deployment directory path restart

/transaction

/serviceAddress

Follow the

higher order

“serviceAddress”

Standby address for transaction process restart

/transaction

/servicePort

10001 Standby port for transaction process restart

/transaction

/connectionLimit

5000 Upper limit of the no. of transaction process connections restart

/transaction

/transactionTimeoutLimit

0 sec Transaction timeout upper limit. Timeout does not occur at 0

sec

restart

Copyright © 2013-2016 TOSHIBA CORPORATION

Configuration of

GridDB

Initial value Meaning of parameters and limitation values change

/sql

/servicePort

210001 Standby port for New SQL access process restart

/sql

/connectionLimit

5000 Upper limit of the no. of connections processed for New SQL

access

restart

/sql

/concurrency

5 No. of simultaneous execution threads restart

Copyright © 2013-2016 TOSHIBA CORPORATION

6. Terminology

Describes the terms used in GridDB in a list.

Terms Meaning

Node Refers to the individual server process to perform data management in

GridDB.

Cluster Refers to a single or a set of multiple nodes to perform data

management together.

Master node Node to perform a cluster management process.

Follower node A node participating in a cluster except the master node.

Number of nodes

 constituting a cluster

Refers to the number of nodes constituting a GridDB cluster. When

starting GridDB for the first time, the number is used as a threshold

value for the cluster to be valid. (Cluster service is started when the

number of nodes constituting a cluster joins the cluster.)

Number of nodes

 already participating

in a cluster

Number of nodes currently in operation that have been incorporated

into the cluster among the nodes constituting the GridDB cluster.

Block A block is a data unit for data perpetuation in a disk (hereinafter known

as a checkpoint) and is the smallest physical data management unit in

GridDB. Multiple container data is placed in a block. Before initial startup

of GridDB, a size of either 64 KB or 1 MB can be selected for the block

size to be set up in the definition file (cluster definition file). Specify

64 KB if the installed memory of the system is low, or if the frequency of

data increase is low.

Partition Data management unit to arrange a container. Smallest data placement

unit between clusters and data movement and replication unit for

adjusting the load balance between nodes (rebalance) and for managing

the data multiplexing (replica) in case of a failure.

Copyright © 2013-2016 TOSHIBA CORPORATION

Terms Meaning

Partition group A group summarizing multiple partitions which is equivalent to the data

file in the file system when the data is perpetuated in a disk. 1

checkpoint file corresponds to 1 partition group. Partition groups are

created according to concurrency (/dataStore/concurrency) figure in

the node definition file.

Row Refers to 1 row of data registered in a container or table. Multiple rows

are registered in a container or table. Columns of multiple data type are

created in a row.

Container Data structure serving as an I/F with the user. Container to manage a

set of rows. 2 data types exist, collection and timeseries container.

Collection One type of container to manage rows having a general key.

Timeseries container One type of container to manage rows having a timeseries key.

Possesses a special function to handle timeseries data.

Table A table is a special container form that exists only in NewSQL products.

SQL can be operated as an interface in NewSQL products.

Database file A perpetuated file group to write data saved in a node that constitutes a

cluster into a disk or SSD. A database file is a generic term to describe

the transaction log file that is saved every time the GridDB database is

updated and the checkpoint file that is written regularly by the database

in the memory.

Checkpoint file A partition group is a file written into a disk. Update information is

reflected in the memory by a cycle of the node definition file

(/checkpoint/checkpointInterval).

Transaction log file Transaction update information is save sequentially as a log.

LSN (Log Sequence Number) Shows the update log sequence no. when updating in the transaction

assigned to each partition. The master node of a cluster configuration

contains the maximum LSD (MAXLSN) of all the partitions maintained

by each node.

Copyright © 2013-2016 TOSHIBA CORPORATION

Terms Meaning

Replica Refers to the multiplexing placement of partitions in multiple nodes. A

replica may be an owner replica which is master data to be updated or a

backup replica used for reference purposes.

Owner node A node that can update a container in a partition. A node that records

the container serving as a master among the replicated containers.

Backup node A node that records the container serving as a replica among the

replicated containers.

Definition file There are 2 types of definition file, a parameter file (gs_cluster.json:

hereinafter known as a cluster definition file) when composing a cluster,

and a parameter file (gs_node.json: hereinafter known as a node

definition file) to set the operations and resources of the node in the

cluster. In addition, there is also a user definition file for GridDB

administrator users.

Event log file The operating log of the GridDB server is saved. Messages such as

errors, warnings, etc. are saved.

OS user (gsadm) A user known as gsadm is created during GridDB installation and who

has the right to execute operating functions in GridDB

Administrator user An administrator user is a GridDB use prepared to perform operations in

GridDB.

General user A user used in the application system.

User definition file File in which an administrator user is registered. During initial

installation, 2 administrators, system and admin, are registered.

Cluster database General term for all databases that can be accessed in a GridDB cluster

system.

Database Theoretical data management unit created in a cluster database. A

public database is created in a cluster database by default. Data

separation can be realized for each user by creating a new database and

giving a general user the right to use it.

Copyright © 2013-2016 TOSHIBA CORPORATION

Terms Meaning

Full backup A backup of the cluster database currently in use is stored online in the

backup directory specified in the node definition file.

Incremental backup

(Cumulative/Differential backup)

A backup of the cluster database currently in use is stored online in the

backup directory specified in the node definition file. In subsequent

backups, only the difference in the update block after the backup is

backed up.

Auto log backup In addition to backing up the cluster database currently in use in the

specified directory online, the transaction log is also automatically

picked up at the same timing as the transaction log file writing. The

write timing of the transaction log file follows the value of

/dataStore/logWriteMode in the node definition file.

Failover When a failure occurs in a cluster currently in operation, the structure

allows the backup node to automatically take over the function and

continue with the processing.

Client failover When a failure occurs in a cluster currently in operation, the structure

allows the backup node to be automatically re-connected to continue

with the processing as a retry process when a failure occurs in the API

on the client side.

Table partitioning Function to access a huge table quickly by allowing concurrent execution

by processors of multiple nodes, and the memory of multiple nodes to

be used effectively by distributing the placement of a large amount of

table data with multiple data registrations in multiple nodes.

Data affinity A function to raise the memory hit rate by placing highly correlated data

in a container in the same block and localizing data access.

Node affinity A function to reduce the network load when accessing data by placing

highly correlated containers and tables in the same node.

Copyright © 2013-2016 TOSHIBA CORPORATION

7 System limiting values

Block size 64KB 1MB

String/spatial data size 31KB 128KB

BLOB data size 127MB 1GB

Array length 4000 65000

No. of columns 1024 1024

No. of columns subject to linear complementary compression 100 100

Size of container name About 16KB About 128KB

Size of column 256Byte 256Byte

Partition size About 64TB About 1PB

Cluster name 64 characters 64charactors

General user name 64 characters 64 characters

Database name 64 characters 64 characters

Password 64 characters 64 characters

No. of users 128 128

No. of databases 128 128

Size of trigger name 256Byte 256Byte

URL of trigger 4KB 4KB

Number of affinity groups 10000 10000

Length of data affinity string 8 characters 8 characters

Copyright © 2013-2016 TOSHIBA CORPORATION

Block size 64KB 1MB

No. of divisions in a timeseries container with a cancellation deadline 160 160

Size of communication buffer managed by a GridDB node Approximately 2

GB

Approximately 2

GB

 String, container name, column name, trigger name, URL of trigger

o Limiting value is equivalent to UTF-8 encode

