

Developing Digital
Twins with GridDB
Version 1.0

April 15, 2025
Fixstars Solutions, Inc.

 1 / 12

Table of Contents
Table of Contents 1
Introduction 2
What is a Digital Twin? 2

Use Cases 2
Common Digital Twin Implementations 3
GridDB and Digital Twins 3

Design and Implementation 3
Data Flow 4
Sample Use Case 4
Data Schema 6
The Twin 7
Querying The Twin 8
Visual Model 9

Conclusion 11

Developing Digital Twins with GridDB

 2 / 12

Introduction

In this document, we will introduce the concept of a Digital Twin and how they are
implemented and used before showcasing a sample implementation that monitors, controls,
and predicts performance of a water boiler using GridDB, a high performance open-source
database with both SQL and NoSQL interfaces and Kafka, an event streaming platform for
building data pipelines.

What is a Digital Twin?

A Digital Twin is a virtual representation that emulates an actual product, process or system
that is used for monitoring, control, simulation, or testing. Compared to a simulation, the
Digital Twin can react in real time to data produced by the actual system.

The digital representation of an actual system can take several forms including a 2D or 3D
model to visualize and control the system, a physics-based or data-driven model that
simulates the state of a system or a combination that offers both visualization and simulation
of the original system.

While it is common to use a twin to compare behavior of an actual product versus its model,
in some cases, the twin is developed before the actual system and is used to simulate and
test the actual system

Digital Twins can improve operational efficiency and decision making by streamlining
monitoring, reducing costs and improving productivity to perform predictive maintenance by
utilizing predictive models in the twin and improve communication and customer satisfaction
by providing a unified view of the system.

Use Cases

Digital Twins are used in many different industries for many purposes. Some examples
include:

● Digital Twins are commonly used in Building Management for Monitoring and Control.
● In design activities for the Automotive, Aerospace and other mechanical engineering

fields, Digital Twins are used for prototyping, simulation and testing.
● For users of industrial or other complex equipment and processes, Digital Twins are

used for monitoring, control, and predictive maintenance.
● Manufacturers can use Digital Twins to track the production cycle to find inefficiencies

or bottlenecks in their processes.

In Monitoring & Control use cases, the Digital Twin offers a virtual representation of the actual
system, showing a 2D or 3D model of the system and its state.

When a Digital Twin is used for simulation, environmental and other sensors from the actual
device are used either in a physics-based model or a data-driven model that uses machine
learning and other techniques that predicts the behavior of the system creating a “Predictive”
Twin. A twin based on a physics-based uses fundamental laws and principles of physics to
accurately simulate and predict its theoretical behavior. A Data-driven twin, uses previous
sensor data along with machine learning or other techniques to build a model to predict the
physical system’s behavior.

Developing Digital Twins with GridDB

https://www.griddb.net/en/
https://kafka.apache.org/

 3 / 12

A Predictive Twin can be used in predictive maintenance and other use cases of Digital Twins
to combine monitoring and simulation, using a model based on past and current sensor data
to predict when in the future behavior such as when components in the system will fail.

Common Digital Twin Implementations

Many Digital Twin systems are built from scratch using both closed and open source
platforms. While it is possible to build a twin system based on a simple message transport
system such as MQTT and REST with or without a database, more featureful data streaming
platforms such as Kafka and advanced time series databases like GridDB will simplify
implementation.

Both AWS and Microsoft offer Digital Twin implementations that are well integrated with their
respective ecosystems. Both focus on 3D modelling and monitoring of a physical system
along with spatial structures to define hierarchical groups of systems.

Physics-based or data-driven simulations can be developed using Matlab that are integrated
with sensors via Mathworks’ Simulink product while Autodesk offers their Tandem Digital Twin
solution for building design and monitoring.

GridDB and Digital Twins

As a Digital Twin can double the number of writes to the database for a given number of data
points, GridDB’s high performance ingestion is a key to reducing costs of operating a Digital
Twin. With GridDB’s Key-Container architecture, data from different sensors are stored in
different containers or tables allowing for database access from the Twin to not interfere with
data access for the physical systems.

Meanwhile, GridDB’s ACID guarantees (Atomicity, Consistency, Isolation, and Durability)
ensure that the state between the actual system and the Digital Twin remain correctly
synchronized and that the twin is not utilizing a mix of new and historic data for its
visualization or simulation.

Finally, GridDB still enables developers to use full SQL statements to build applications
instead of just simple NoSQL queries. This is important as SQL join statements that can
compare the actual and twin states are straightforward to implement to determine if
anomalous behavior is occurring.

Design and Implementation

To showcase developing a Digital Twin stack using GridDB, a simple proof of concept was
developed to demonstrate a Digital Twin with monitoring, control and physics-based
simulation capabilities.

The temperature of the tank (and outlet flow) and SCFM of natural gas required to heat the
boiler are calculated using standard BTU based formulas, if temperature is below the
thermostat setting:

Developing Digital Twins with GridDB

 4 / 12

 temp = temp + (((scfm / 96.7) * 10000)/ (60*tank_size*8.33))
scfm = max_scfm

Otherwise we calculate the temperature drop of the tank and the SCFM required to heat it
back to the thermostat setting:

 temp = (gpm*ambient+(gallons-gpm)*temp)/gallons

scfm = ((8.33 * gpm * (tstat - ambient))/10000)*96.7

Data Flow

Kafka is used to stream data between the actual system, the twin and GridDB while the 2D
model pulls data continuously from GridDB via the GridDB WebAPI.

The GridDB Kafka Sink plugin is used to push data directly to GridDB from the actual and
twin while data is pushed to the twin from GridDB using the Kafka GridDB Source Plugin.
Alternatively, the system could be configured to not require the GridDB Source Plugin and the
twin would directly read messages sent from the actual system which would offer lower
latency but does not guarantee that all messages are synchronized in GridDB.

Both the actual and twin read from the same boiler_control Kafka topic to set the thermostat.

Sample Use Case

To demonstrate the usefulness of the Digital Twin concept with GridDB, we will show a proof
of concept that is able to visualize the performance of a gas burning boiler while the twin
calculates the expected behavior to determine the performance of the actual system.

We start with a simulated gas burning water boiler. The boiler burns a measured amount of
natural gas in SCFM to heat a tank where heated water flows out and is replaced by water of
ambient temperature. Such systems are commonly used both in manufacturing processes

Developing Digital Twins with GridDB

 5 / 12

where hot water is used for a variety of reasons such as cleaning equipment and in building
management for radiant heat and hot water consumption.

The thermostat is set via data sent to the Kafka boiler_control_N topic and is read and
applied in a secondary thread:

def control_thread():
 print("Starting control consumer...")
 consumer = KafkaConsumer('src_boiler_control_1',
 bootstrap_servers=['localhost:9092'])

 global tstat
 for message in consumer:
 data = json.loads(message.value.decode('utf-8'))
 tstat = data['payload']['tstat']

Values for ambient temperature and gpm are random and vary between 0 and 10 gallons per
minute and 50 and 90 degrees fahrenheit respectively while the value for Gallons is
hardcoded. SCFM and temp are calculated every minute with a physics-based model using
the following logic:

def calc():
 global temp
 global scfm
 global tstat
 global gpm
 global ambient
 global gallons

 gpm = gpm + random.randrange(-5, 10, 1)/2
 if gpm < 0:
 gpm = 0
 elif gpm > 10:
 gpm = 10

Developing Digital Twins with GridDB

 6 / 12

 ambient = ambient + random.randrange(-2, 2, 1)/2
 if ambient < 50:
 ambient = 50
 elif ambient > 90:
 ambient = 90

 if temp < tstat:
 print("Heating tank")
 scfm = max_scfm
 temp = temp + (((scfm/96.7)*10000)/(60*gallons*8.33)*add_error())

 else:
 temp = (gpm*ambient+(gallons-gpm)*temp)/gallons
 if temp > tstat:
 print("Cooling");
 scfm = 0
 else:
 print("heating flow")
 req_btu = 8.33 * gpm * (tstat - ambient)
 scfm = ((req_btu/10000)*96.7)/add_error()
 temp = tstat

 produce()

The produce() function then publishes the data via Kafka where it is stored in GridDB and
then propagated to the twin.

To simulate anomalous data from an actual device, an error quotient is applied to each value
on regular intervals, reducing the temperature or increasing the SCFM.

def add_error():
 global error
 global error_count
 error_count = error_count+1
 if error_count == 30:
 error = not error
 error_count = 0

 if error:
 return 0.75
 else:
 return 1.0

Data Schema

For each system, there are three time series containers where N is an unique identifier for the
system:

● actual_reading_N

Developing Digital Twins with GridDB

 7 / 12

● twin_reading_N
● boiler_control_N

actual_reading_N and twin_reading_N have matching schemas and store sensor data while
boiler_control_N stores the thermostat setting.

(actual|twin)_reading_N:
● TIMESTAMP ts
● FLOAT temp
● FLOAT scfm
● FLOAT gpm
● FLOAT ambient
● INTEGER gallons

boiler_control_N:
● TIMESTAMP ts
● INTEGER tstat

The Twin

The Twin uses the same thermostat setting control thread and physics-based model as the
actual simulated device but instead of generating random data for GPM or Ambient
Temperature, it uses the synchronized values from the actual system.

def reading_thread():
 print("Starting reading consumer...")
 consumer = KafkaConsumer('src_actual_reading_1',
 bootstrap_servers=['localhost:9092'])

 global temp
 global gpm
 global ambient
 global gallons
 global last_ts
 global scfm

 for message in consumer:
 data = json.loads(message.value.decode('utf-8'))

 gpm = data['payload']['gpm']
 ambient = data['payload']['ambient']
 gallons = data['payload']['gallons']

 if last_ts == None:
 temp = data['payload']['temp']
 last_ts = data['payload']['ts']
 else:
 last_ts = data['payload']['ts']
 if tstat == None:
 print("tstat not set")
 else:
 delta = data['payload']['ts'] - last_ts
 if temp < tstat:
 print("Heating tank")
 scfm = max_scfm
 temp = temp + ((scfm / 96.7) * 10000)/ (60*gallons*8.33)

Developing Digital Twins with GridDB

 8 / 12

 else:
 temp = (gpm*ambient+(gallons-gpm)*temp)/gallons
 if temp > tstat:
 print("Cooling");
 scfm = 0
 else:
 print("heating flow")
 req_btu = 8.33 * gpm * (tstat - ambient)
 scfm = (req_btu/10000)*96.7
 temp = tstat
 produce()

Querying The Twin

As GridDB supports both the ultra fast NoSQL interface and fully featured SQL interface,
building queries that leverage the data created by the twin is quite simple.

For the NoSQL interface, the logic is mostly handled by the application. For example, if we
wanted to set an anomaly condition when the actual temperature is 10% different than the
twin’s temperature, the logic would look like:

if actual[ts][‘temp’] > twin[ts][‘temp’]*1.1 or
 actual[ts][‘temp’] < twin[ts][‘temp’]/1.1:
 anomaly[ts] = True
else:
 anomaly[ts] = False

With SQL, we can use JOINs to combine the actual and twin data for easier analysis of
current and historic data.

The following query performs a JOIN on the actual and twin tables and it is visually easy to
see when SCFM differs between the twin and actual systems.

> select actual_reading_1.ts,
 actual_reading_1.temp as actual_temp, twin_reading_1.temp as twin_temp,

 actual_reading_1.scfm as actual_scfm, twin_reading_1.scfm as twin_scfm
 from twin_reading_1
 join actual_reading_1 on twin_reading_1.ts = actual_reading_1.ts
 order by ts desc;

ts | actual_temp | twin_temp | actual_scfm | twin_scfm

--------------------+-------------+-----------+-------------+----------

2025-03-17 03:10:27 | 200 | 200 | 120.42 | 90.32

2025-03-17 03:10:26 | 200 | 200 | 136.94 | 102.7

2025-03-17 03:10:25 | 200 | 200 | 161.1 | 120.83

2025-03-17 03:10:24 | 200 | 200 | 120.83 | 120.83

2025-03-17 03:10:23 | 200 | 200 | 108.74 | 108.74

2025-03-17 03:10:22 | 200 | 200 | 120.83 | 120.83

2025-03-17 03:10:21 | 200 | 200 | 120.83 | 120.83

2025-03-17 03:10:20 | 200 | 200 | 102.7 | 102.7

2025-03-17 03:10:19 | 200 | 200 | 114.4 | 114.4

Developing Digital Twins with GridDB

 9 / 12

2025-03-17 03:10:18 | 200 | 200 | 120.83 | 120.83

Using aggregation functions, it is easy to count the number of anomalous readings:

> select count(*) from twin_reading_1
 join actual_reading_1 on twin_reading_1.ts = actual_reading_1.ts
 where actual_reading_1.scfm > twin_reading_1.scfm*1.1 or
 actual_reading_1.scfm < twin_reading_1.scfm/1.1;

Col1

210884

Visual Model

The visual model is written in Typescript using Next.js (v15.2.0) as its backbone. Material UI
and Tailwind were used for styling; konva was used for drawing SVG lines. Next.js employs a
server/client component split; server components are code rendered on the server; client
components are rendered by the user’s browser.

All GridDB queries are conducted using the GridDB WebAPI on the server side. The WebAPI
allows for communication with GridDB using HTTP requests through various HTTP methods
(“POST” & “PUT” in this case).

To fetch the current water boiler temperature, for example, a request is made to an API
endpoint. This endpoint contains various identifying parameters, such as database and
container name. Sent along with that request is a payload body which contains other
information which can help narrow the scope of the query.

Developing Digital Twins with GridDB

 10 / 12

//https://<webapiurl>/griddb/v2/<clusterName>/dbs/<databasename>/containers/<container_name>/rows

async function readContainer (containerName: string, limit: number,
pastHour: boolean) {
 let condition = ""
 if (pastHour) {
 condition = "ts < TIMESTAMPADD(HOUR, NOW(), -1)"
 }
 const raw = JSON.stringify({
 "offset": 0,
 "sort": "ts desc",
 limit,
 condition
 });
 const requestOptions = {
 method: "POST",
 headers: myHeaders,
 redirect: "follow",
 body: raw
 };

 const url = webApiURL + "/containers/" + containerName + "/rows";

 try {
 const resp = await fetch (url, requestOptions)
 const json = await resp.json();
 return json;
 } catch (error) {
 console.log("Error fetching read container: ", error);
 }
 }

As with fetching data, we can also write new data to GridDB using the WebAPI. In the case of
updating the water boiler temperature, we send a `PUT` request to the WebAPI Server to
write a new row of data with the current timestamp and a new value for the temperature.

async function pushToBoilerCont (data: any[]) {
 const raw = JSON.stringify([
 //data is an array: [new Date(), sliderValue]
 data
]);
 const requestOptions = {
 method: "PUT",
 headers: myHeaders,
 redirect: "follow",
 body: raw
 };

 const url = webApiURL + "/containers/" + BOILER_CONT + "/rows";

Developing Digital Twins with GridDB

 11 / 12

 try {
 const resp = await fetch (url, requestOptions)
 const json = await resp.json();
 console.log(json);
 } catch (error) {
 console.log("Error putting data to " + BOILER_CONT, error);
 }
 }

The visual model itself queries GridDB once every second and updates the values on screen
accordingly. To go along with this, if there is a noticeable discrepancy between the twin
representation of SCFM and the actual SCFM value (>10%), the visual model will display a
prominent error message (the temperature is handled the same way).

This is accomplished by comparing the values of the twin and the actual sensor during every
query. All values being queried by the visual model are automatically cached by Nextjs on the
server side, meaning there are no noticeable performance hits caused by the constant
querying and comparing of values.

Conclusion

A Digital Twin is an effective tool to design, evaluate and monitor a physical system by
showing a visual representation of the system and predicting or simulating its current and
future behavior through physics or data based models.

GridDB’s ACID guarantees, high performance, and native NoSQL plus SQL interfaces make
it ideal for storing data generated by the actual system and its twin.

In the water boiler use case presented, the Digital Twin provides visualization of the boiler
performance and usage as well as using a predictive physics-based twin model that is able to
determine when the boiler efficiency is not meeting predicted levels to notify maintenance
personnel.

The complete source code for our sample Digital Twin project is available at
https://github.com/griddbnet/digital-twin

Developing Digital Twins with GridDB

https://github.com/griddbnet/digital-twin

	Table of Contents
	
	Introduction
	What is a Digital Twin?
	Use Cases
	Common Digital Twin Implementations
	GridDB and Digital Twins

	Design and Implementation
	Data Flow
	
	Sample Use Case
	Data Schema
	The Twin
	Querying The Twin
	Visual Model

	Conclusion

