
Time Series Database Evaluation
Performance and Data Model Analysis of
GridDB, QuestDB and TimescaleDB using the
TSBS DevOps Benchmark.

Version 1.0

April 19, 2023
Fixstars Solutions, Inc.

1 / 14

Table Of Contents
Table Of Contents 1
Executive Summary 1
Background 1

Data Modelling 2
Test Environment 3

Benchmark Modifications 3
Java vs. Go 3
Data Ingestion Patterns 4

Results 6
Load 6
High Cpu All Query 7
High Cpu 1 Query 8
Lastpoint Query 9
Single GroupBy Query 10
Double GroupBy Query 11

Conclusion 12

Executive Summary
In this Time Series Benchmark Suite Evaluation of GridDB, QuestDB, and TimescaleDB, the
three time series databases are compared by evaluating their ingestion or load performance
as well as their query performance using five of the available queries in TSBS that highlight
different use cases that could be used in a real world analysis of time series data.

Background
Toshiba’s GridDB is a highly scalable, in-memory time series database with NoSQL and SQL
interfaces. It uses a unique Key-Container data model allowing data from individual devices to
be separated. The NoSQL API allows developers to write multiple rows or execute multiple
queries from multiple containers at once.

QuestDB is a high performance open source SQL database for time series data that features
columnar data storage and a variety of compatible APIs including InfluxDB and PostgreSQL
line protocols.

TimescaleDB is a time-series SQL database providing fast analytics, scalability, with
automated data management that uses PostgreSQL as its storage engine.

The Time Series Benchmark Suite (TSBS) is a set of applications to generate data and
queries for a variety of use cases and time series databases. In this comparison, the cpu-only
subset of TSBS’s DevOps use case was used. The cpu-only data set is 10 CPU metrics such
as usage_user, usage_system, etc for every host. To test how cardinality affects each
database, 100, 1,000, 10,000, and 100,000 hosts were evaluated.

TSBS uses batches to load data which may not reflect real world use cases where data

Time Series Database Evaluation

2 / 14

needs to be ingested in near real time. Batching of data is often done on per device level
instead of grouping data from all devices together. Doing this simplifies the data producer and
ingestion application optimizing the non-database components of the ingestion pipeline by
reducing the number of messages sent.

Data Modelling

There is one significant difference between the databases being evaluated and that is that
QuestDB and TimescaleDB use a tabular data model and GridDB uses a Key-Container data
model. All data for QuestDB and TimescaleDB is inserted into one table while GridDB puts
data for each host into separate tables (or containers in GridDB terminology).

The following diagrams show how GridDB and QuestDB/TimescaleDB represent the TSBS
Devops dataset in their respective data models:

GridDB QuestDB/TimescaleDB

This Key-Container data model has both advantages and disadvantages, it makes queries for
a single container blazingly fast while queries that need to fetch data from multiple containers
can be relatively slow if the query execution time is significantly faster than the time required
to set up the query. Likewise, for high cardinality data sets, ingesting data can be inefficient in
cases where only a small number of rows are inserted into each container.

QuestDB and TimescaleDB both use a tabular data model that makes creating relational
queries spanning multiple devices simple to create and understand for anyone familiar with
SQL. All three databases use a wide column format, where there are multiple data points per
row for each timestamp. It is theoretically possible to use a narrow database schema for the
TSBS DevOps data set but since the data is consistent, meaning that the metrics are always
for the same point in time, the wide format is more efficient.

While it is possible to use GridDB with the same data model as QuestDB and TimescaleDB, it
is generally best practice to not do so. The advantages and disadvantages of the

Time Series Database Evaluation

3 / 14

Key-Container data model will be discussed as each TSBS result is examined further.
Likewise, it is possible to use separate tables for each device in a relational database like
QuestDB or TimescaleDB, but it typically is not done as it minimizes some of the flexibility in
creating queries.

Test Environment
The final evaluation was run on a single Standard D8s v3 (8 vcpus, 32 GiB memory) instance
on Microsoft Azure using a RockyLinux 7.1 image. A 1 TB Premium SSD LRS disk was used
to store the input data and database storage. The database and application (load or
run_queries) were both run on the same instance.

Input scale was evaluated with 100, 1,000, 10,000, and 100,000 number of input servers. The
100,000 host evaluation used 1 month of data points per host 10 seconds apart while the
other evaluations used 4 months of data points per host. A batch size or the number of
records written to each database at one time of 1,000 records was used for ingestion as it
was ideal for all three databases except the 10,000 and 10,000 host data sets with GridDB
where a batch size of 10,000 proved to have higher performance. The batch size is set via a
tsbs_load command line argument.

As the system had 8 cores, 8 workers (or writer threads) were used for QuestDB and
TimescaleDB. GridDB used 10 workers to optimize the internal data structures and write
patterns. Using 10 workers slightly degraded QuestDB and TimescaleDB performance. The
number of workers is via a tsbs_load command line argument.

GridDB Community version 4.6 and its NoSQL API was used for the evaluation. A Java
analog which read the same format input files was developed for GridDB ingestion while a
TSBS Go run_queries program was used.

QuestDB version 6.5.3 was used with the original TSBS go applications that use Influx Line
protocol for ingestion and REST based queries.

TimescaleDB version 2.9.2 was used along with PostgresSQL 12.13. Unmodified TSBS Go
applications that use the PGX PostgresSQL driver were used. postgresql.conf was modified
with the recommendations generated but the timescaledb-tune utility.

TSBS was fetched from their Git repository in late 2022 and compiled with go 1.19.2.

Benchmark Modifications

Java vs. Go

Early on when developing the GridDB implementation of TSBS, it was noted that load
performance was not as expected and Fixstars suspected that GridDB's Go Driver could be
the bottleneck. A Java equivalent implementation of the tsbs_load for GridDB was created
and used instead.

Java is the native interface for GridDB while the other language bindings use SWIG and a
series of abstractions to offer an API in multiple languages including Go, Python, NodeJS and
others.

Time Series Database Evaluation

4 / 14

After profiling both the Java and Go versions of tsbs_load, their no-op version which scanned
the input files and built data structures but did not perform writes had similar performance of
approximately 500,000 rows per second but once actual GridDB writes were introduced, the
Go performance fell to less than 100,000 rows pers second.

Data Ingestion Patterns

There are several options on ingesting time series data into the database and by default
TSBS interleaves each record by hostname as so:

Hostname Timestamp Data

host_0 March 1 2016 10:00:00 …

host_1 March 1 2016 10:00:00 …

host_2 March 1 2016 10:00:00 …

… March 1 2016 10:00:00 …

host_9 March 1 2016 10:00:00 …

host_0 March 1 2016 10:00:10 …

host_1 March 1 2016 10:00:10 …

… March 1 2016 10:00:10 …

Time Series Database Evaluation

5 / 14

host_9 March 1 2016 10:00:10 …

Another time series ingestion design pattern would rearrange the data so there are multiple
records for one host and then multiple records for another host. This mimics the scenario
where each host would send a set of metrics that span a period of time rather than just a set
of metrics for a specific timestamp to reduce communication overhead. The following
example mimics data where each sequence is one minute or six rows long:

Hostname Timestamp Data

host_0 March 1 2016 10:00:00 …

host_0 March 1 2016 10:00:10 …

host_0 … …

host_0 March 1 2016 10:00:50 …

host_1 March 1 2016 10:00:00 …

host_1 … …

host_1 March 1 2016 10:00:50 …

… … …

host_9 March 1 2016 10:00:00 …

host_9 … …

host_9 Marc 1 2016 10:00:50 …

host_0 March 1 2016 10:01:00 …

… … …

When using multiple containers with GridDB, ingestion is faster if data is not perfectly
interleaved as the input size changes as it makes writes to each container more efficient.

With perfectly interleaved data and a batch size of 10,000, watch batch write has the following
characteristics:

Number of Hosts Containers Written Rows Per Container

1,000 1,000 10

10,000 10,000 1

100,000 10,000 1

As the batch size is 10,000, for 1,000 hosts the load application can iterate through 10,000

Time Series Database Evaluation

6 / 14

rows adding 10 for each host to the array written to GridDB. For 10,000 hosts, each batch
would include one row for every host. With 100,000 hosts, the first batch would include one
row for hosts 0 - 9,999, the second batch would include one row for hosts 10,000 - 19,999
and so on. The eleventh batch would start again from the beginning and include a row for
hosts 0 - 9,999.

Continuing with batch size of 10,000 and de-interleaving the data so there is 10 records in
sequence for every host, for each batch GridDB writes fewer containers with more rows in
every container:

Number of Hosts Containers Written Rows Per Container

1,000 1,000 10

10,000 1,000 10

100,000 1,000 10

To explain further, the first batch would include ten rows for hosts 0 - 999, the second batch
would include 1000 - 1999 and so on. With 10,000 hosts, the tenth batch would include hosts
0 - 999 again.

Optimizing these write patterns improved GridDB’s load performance by approximately 10%
but this de-interleaved input data was not used in the final evaluation of GridDB to show a fair
comparison with QuestDB and TimescaleDB. When designing a data ingestion system for
GridDB, the latter data pattern should be used to get the best GridDB load performance.

Results
In general, GridDB was the fastest of the three databases although it required more tuning.
The relative ingestion and querying performance of the 10,000 host data set is summarized
below.

Load

For loading TSBS data, a batch size of 10,000 was used for GridDB while 1,000 was used for

Time Series Database Evaluation

7 / 14

QuestDB and Timescale which is what we found to be optimal. 8 workers were used for
QuestDB and TimescaleDB to match the number of CPU cores while GridDB used 10 threads
so the same thread would write the same container in the lower scale tests.

It should be noted that QuestDB’s performance was much better using 4 workers and unlike
GridDB, most of its CPU load was on the server and not the client. Its greater performance
with 4 threads may not be typical in a real world application where there are large number of
applications writing to it at the same time.

of Hosts GridDB QuestDB TimescaleDB
QuestDB

(4 workers)

100 304,118 215,556 232,987 427,935

1,000 350,161 240,893 220,551 379,323

10,000 315,071 144,563 178,996 408,734

100,000 153,093 182,581 42,795 295,550
Loaded Rows Per Second.

High Cpu All Query

high-cpu-all is very similar to high-cpu-1, but instead of querying just a single host, it queries
all hosts.

With GridDB, the same query is used, but it is executed on all host containers like lastpoint
but since each single query itself is more complex than lastpoint, the query setup time for
each container does not impact performance as it does with lastpoint.

Time Series Database Evaluation

8 / 14

of Hosts GridDB QuestDB TimescaleDB

100 122.9 12.2 9.0

1,000 42.4 1.5 1.6

10,000 2.5 0.0 0.1

100,000 2.1 0.9 0.6
High Cpu All Queries Per Second.

High Cpu 1 Query

The high-cpu-1 query returns all entries for a single host where a metric is above a certain
threshold. With QuestDB, it is implemented as SELECT * FROM cpu WHERE usage_user >
90.0 AND hostname IN ('%s') AND timestamp >= '%s' AND timestamp < '%s'`.

In TimescaleDB, it is implemented as SELECT * FROM cpu WHERE usage_user > 90.0 and
time >= '%s' AND time < '%s' AND hostname IN (%s).

With GridDB, the query select * where usage_user > 90 and timestamp >
TIMESTAMP('%s') and timestamp < TIMESTAMP('%s') is run on the specified hosts. The
max-cpu-1 query demonstrates the Key-Container data model’s biggest strength as the query
is only run on a single container with much fewer rows in it compared to a single table.

Time Series Database Evaluation

9 / 14

of Hosts GridDB QuestDB TimescaleDB

100 7220.5 387.8 162.1

1,000 5086.8 395.8 157.3

10,000 2759.7 198.6 36.8

100,000 2393.2 1049.0 107.2
High Cpu 1 Queries Per Second.

Lastpoint Query

The lastpoint query fetches the most recent record for each host.

QuestDB used SELECT * FROM cpu latest by hostname while TimescaleDB used SELECT
DISTINCT ON (hostname) * FROM cpu ORDER BY hostname, time DESC.

Lastpoint demonstrates GridDB’s greatest weakness as it uses a very simple query that must
be executed on every container. The select time_prev(*, now()) TQL query was
executed on every host container.

Time Series Database Evaluation

10 / 14

of Hosts GridDB QuestDB TimescaleDB

100 134.8 1488.0 713.1

1,000 64.1 539.3 86.1

10,000 3.1 53.8 6.3

100,000 2.6 5.0 0.6
Lastpoint Queries Per Second.

Single GroupBy Query

The single groupby query performs a simple aggregate on one metric for 1 host, every minute
for 1 hour.

QuestDB uses the following query, SELECT timestamp, %s FROM cpu WHERE hostname IN

('%s') AND timestamp >= '%s' AND timestamp < '%s' SAMPLE BY 1m while Timescale
uses SELECT %s AS minute, %s FROM cpu WHERE %s AND time >= '%s' AND time <

'%s' GROUP BY minute ORDER BY minute ASC.

On GridDB, it is implemented with one query for each time interval and executed on one host
container with the following query, select max(%s) where timestamp <
TO_TIMESTAMP_MS(%d) and timestamp > TO_TIMESTAMP_MS(%d).

Time Series Database Evaluation

11 / 14

of Hosts GridDB QuestDB TimescaleDB

100 1351.3 1550.6 692.4

1,000 1282.7 1471.1 874.7

10,000 954.0 678.0 165.2

100,000 852.4 38.7 163.2
Single GroupBy Queries Per Second.

Double GroupBy Query

Like the single-groupby query, double-groupby performs a simple aggregate on one metric for
a set of time periods over a longer duration. However, instead of querying just one host, all
hosts are queried.

As with high-cpu-all, GridDB executes a set of n queries where n is the number of time
periods on all host containers.

Time Series Database Evaluation

12 / 14

of Hosts GridDB QuestDB TimescaleDB

100 50.6 25.7 6.8

1,000 8.0 3.1 2.2

10,000 0.7 0.3 0.2

100,000 0.6 1.7 1.1
Double GroupBy Queries Per Second.

Conclusion
All three databases were able to ingest a 100,000 hosts worth of DevOps data in real time
with 10 seconds between each data point making them all an effective ingestion option for
this use case. QuestDB and TimescaleDB’s slow query performance is concerning if real time
analysis is required, but they would perform adequately in scenarios where analysis is
performed as a nightly batch job.

While QuestDB shows tremendous ingestion performance under ideal conditions especially
with a data set with high cardinality, it falls off significantly without the preferred number of
workers. QuestDB is recommended for applications with extremely high cardinality where
query performance is not as important.

GridDB also shows that an application must be carefully tuned to attain peak performance
and shows outstanding query performance when application queries are able to fit its
Key-Container data model.

Meanwhile, with TimescaleDB being built on top of PostgreSQL, its familiarity to many
developers and administrators make it suitable for many applications despite its lower
performance.

Time Series Database Evaluation

13 / 14

Time Series Database Evaluation

