
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Time	Series	Database	Performance	
Comparison	Using	GridDB	and	InfluxDB		

March	12,	2018	
Revision	1.9	

	 	



	
	
	

1	

Table	of	Contents	
Table	of	Contents	.......................................................................................................................................................................	1	
List	of	Tables	and	Figures	.......................................................................................................................................................	1	
Executive	Summary	..................................................................................................................................................................	2	
Introduction	.................................................................................................................................................................................	2	
Environment	................................................................................................................................................................................	3	
AWS	Configuration	...............................................................................................................................................................	3	
Software	....................................................................................................................................................................................	4	
Configuration	..........................................................................................................................................................................	4	
GridDB	...................................................................................................................................................................................	4	
InfluxDB	................................................................................................................................................................................	5	

Test	Methodology	......................................................................................................................................................................	5	
Test	Design	...............................................................................................................................................................................	5	
Methodology	............................................................................................................................................................................	6	
Collection	and	Aggregation	...............................................................................................................................................	6	

Results	............................................................................................................................................................................................	7	
Insert	..........................................................................................................................................................................................	7	
Read	............................................................................................................................................................................................	8	
Scan	.............................................................................................................................................................................................	9	
Database	Size	.......................................................................................................................................................................	11	
Tabular	Results	...................................................................................................................................................................	11	

Conclusion	..................................................................................................................................................................................	13	
Appendices	.................................................................................................................................................................................	14	
gs_node.json	.........................................................................................................................................................................	14	
gs_cluster.json	......................................................................................................................................................................	15	
influxdb.conf	.........................................................................................................................................................................	15	

List	of	Tables	and	Figures	
Figure	1:	Insert	Throughput	..................................................................................................................................................	8	
Figure	2:	Read	Throughput.	...................................................................................................................................................	9	
Figure	3:	Total	Scan/Aggregation	Throughput.	.........................................................................................................	10	
Figure	4:	Scan,	Count,	Average,	and	Sum	Latencies.	................................................................................................	10	
Figure	5:	Storage	Requirements	.......................................................................................................................................	11	
Table	1:	AWS	Instance	Specifications	...............................................................................................................................	4	
Table	2:	YCSB-TS	Database	Schema	...................................................................................................................................	6	
Table	3:	Workload	Throughputs	......................................................................................................................................	11	
Table	4:	Operation	Latencies	.............................................................................................................................................	12	
Table	5:	Storage	Requirements	.........................................................................................................................................	12	
Table	6:	CPU/Memory	Usage.	............................................................................................................................................	13	
	

	



	
	
	

2	

Executive	Summary	
With	the	Internet	of	Things		(IoT)	projected	to	have	50	billion	plus	operating	devices	generating	
one	trillion	dollars	in	revenue	and	even	more	Time	Series	data,	Time	Series	database	(TSDB)	
performance	is	becoming	crucial	for	organizations	developing	applications	to	leverage	this	data.	
Fixstars	decided	to	evaluate	two	open	source,	innovative	Time-Series	Database	(TSDB)	products	
that	have	been	gaining	mindshare	in	the	market.	These	databases	were	Toshiba	Digital	Solutions	
Corporation’s	GridDB	and	InfluxData’s	InfluxDB	–	both	touted	for	their	IoT	focused	architecture.			
	
Both	databases	were	tested	with	Yahoo	Cloud	Servicing	Benchmark	–	Time	Series	(YCSB-TS)	
running	on	Amazon	Web	Services	(AWS).		We	compared	ingestion,	read,	and	scan	performance	to	
cover	the	generic	operations	of	time	series	databases.	In	addition,	we	also	highlighted	other	
important	criteria	like	latency	and	queries	–	which	are	the	other	key	parameters	in	IoT	use	cases.		
One	workload	was	used	to	test	the	read	performance	with	read	queries	to	search	for	timestamps.	
Other	workload	covered	scan,	count,	average,	sum	of	timeseries	data.	Two	different	workloads	
were	tested	with	datasets	of	100	and	400	million	records.		
	
The	results	of	the	tests	surprised	us	by	showing	that	GridDB	markedly	outperformed	InfluxDB	in	
both	latency	and	throughput.	InfluxDB	has	been	around	a	few	years	and	has	gained	a	nice	niche	
market-share	in	IoT	use	cases.		Yet,	GridDB’s	innovative	architecture	of	intelligently	using	
containers	(containers	are	similar	to	the	tables	of	Relational	Database)	bears	results.		The	results	
also	demonstrated	GridDB’s	superior	scalability	and	consistency,	which	are	both	thanks	in	part	to	
GridDB’s	in-memory	architecture	and	ACID	(Atomicity, Consistency, Isolation & Durability))	
compliance	within	the	container.			
	

Introduction	
In	data	management,	time	series	data	can	be	defined	as	a	sequence	of	values	collected	over	a	time	
interval.	Examples	of	time	series	data	are	IoT	sensor	data,	health	monitor	information,	solar	flare	
tracking,	event	monitoring,	etc.	Most	traditional	NoSQL	databases	fail	to	provide	the	performance	
and	scalability	needed	to	handle	large	volumes	of	timeseries	data.	As	a	result,	databases	that	
specialize	in	handling	timeseries	data	were	developed.		TSDBs	such	as	GridDB	or	InfluxDB	are	
databases	specialized	for	storing,	collecting,	retrieving,	and	processing	timestamped	data.	
Timeseries	databases	are	optimized	to	provide	effective	data	compaction,	high-write	performance,	
and	fast	range	queries.	This	makes	timeseries	databases	more	scalable,	reliable,	and	cheaper	than	
traditional	databases	for	processing	timestamp	data.	
	
GridDB	is	an	in-memory	oriented,	distributed	NoSQL	database	with	a	hybrid	cluster	architecture	to	
provide	reliability	and	is	one	of	the	only	marquee	NoSQL	databases	to	also	be	fully	ACID	compliant.	
GridDB	can	be	used	as	a	time	series	database	by	housing	data	in	timeseries	containers.	These	
timeseries	containers	provide	time-type	indexing	and	data	functions	like	time-weighted	averaging	
and	interpolation.	Timeseries	containers	also	provide	a	unique	compression	utility	to	effectively	



	
	
	

3	

release	expired	data.	GridDB	is	available	under	both	open	source	and	commercial	licenses.	The	
version	used	for	these	tests	was	the	open-source	variety,	GridDB	Community	Edition.		
	
InfluxDB	is	a	Time	Series	database	and	is	built	to	handle	high	write	and	query	loads.	It	uses	a	HTTP	
Representational	State	Transfer	(REST)	API	for	querying	data	as	well	as	an	SQL-like	query	language	
known	as	InfluxQL.	InfluxDB	possesses	a	distributed	architecture	in	which	multiple	nodes	can	
handle	storage	and	execute	queries	simultaneously.	InfluxDB	uses	a	Time	Structured	Merge	(TSM)	
Tree	storage	engine	to	handle	high	ingest	speed	and	perform	effective	data	compression.	InfluxDB	
has	open-source	editions	and	commercially	licensed	enterprise	editions	available	for	use.	For	
benchmark	testing,	InfluxDB	Open	Source	Edition	was	used.		
	
YCSB-TS	is	a	software-fork	of	the	modular	benchmark	YCSB,	Yahoo!	Cloud	Serving	Benchmark	that	
is	optimized	for	testing	timeseries	NoSQL	databases.	Like	the	original	YCSB,	it	is	also	written	in	
Java.	YCSB-TS	supports	timeseries	ranges,	makes	use	of	time-domain	functions,	and	adds	workload	
options	that	are	specific	to	timeseries	databases.		
	

Environment	

AWS	Configuration	

The	YCSB-TS	benchmark	tests	were	run	on	a	C4	AWS	EC2	instance	based	on	a	CentOS	6.9	image.		
C4.2xlarge	model	was	used	as	it	is	optimized	for	compute-intensive	workloads.	
	
The	AWS	instance	held	both	database	servers	although	only	one	was	tested	at	a	time.	A	database	
server	ran	with	the	YCSB-TS	client.	The	testing	process	consisted	of	starting	and	connecting	to	the	
database	server,	running	a	YCSB-client,	collecting	and	aggregating	performance	data	along	with	
resource	usage.		
	
For	both	InfluxDB	and	GridDB,	all	their	data	was	stored	on	a	50GB	io1	Elastic	Block	Storage	with	
1000	IOPS	provisioned	that	ensured	more	consistent	results	over	a	general-purpose	(gp)	block	
storage	type	device	with	burstable	performance.	
	 	



	
	
	

4	

	

AWS	Instance	Type	 C4.2xlarge	

Operating	System	 CentOS	6.9	

CPU	Processor	 Intel	Xeon	CPU	E5-2666	v3	

vCPU	Cores	 8	

Clock	Speed		 2.9GHz	

Main	Memory	Size	 15GB	

Data		Storage	 100GB	io1	EBS	with	1000	IOPS	provisioned	
Table	1:	AWS	Instance	Specifications	

Software	

GridDB	Community	Edition	version	3.0.1	was	installed	into	the	AWS	instance	using	RPM	package	
obtained	from	the	official	GridDB	website	(www.griddb.net).	InfluxDB	version	1.3.6	was	also	
installed	using	the	official	RPM	packages	downloaded	from	InfluxData’s	website	
(www.influxdata.com).	
	
YCSB-TS	was	cloned	from	the	official	TSDBBench	GitHub	repository	on	October	2017.	The	full	
YCSB-TS	distribution	along	with	all	its	bindings	were	built	using	Maven.	The	InfluxDB	driver	for	
YCSB-TS	was	modified	from	its	original	source	so	that	it	could	distribute	datasets	between	multiple	
measurements.	A	custom	database	connector	for	GridDB	was	developed	using	the	GridDB	driver	for	
the	original	YCSB	framework	as	its	base.	

Configuration		

GridDB	

In	the	configuration	file,	gs_node.json,	“storeMemoryLimit”	was	increased	6192MB	(6GB)	to	allow	
for	the	small	data	set	to	fit	within	storeMemory.	Concurrency	was	increased	to	8	to	match	the	
number	of	vCPUs.			
	
The	field	for	storeCompressionMode	was	also	added	and	set	to	BLOCK_COMPRESSION.	This	
allowed	GridDB	to	minimize	storage	use	when	storing	large	datasets.	Block	compression	in	GridDB	
involves	exporting	in-memory	data	to	be	compressed,	allowing	vacant	areas	of	memory	to	be	
deallocated,	thereby	reducing	disk	use.		



	
	
	

5	

InfluxDB	

Issues	that	can	arise	with	InfluxDB	include	high	memory	usage	and	lower	performance	when	using	
a	high	cardinality	dataset.	To	prevent	this,	adjustments	were	made	to	InfluxDB’s	configuration	file,	
influxdb.conf.	For	example,	http-logging	was	disabled	so	that	logs	of	all	POST	and	insert	operations	
would	not	be	stored,	reducing	disk	usage.	
	
Max-select-point	and	max-select-series	were	disabled	in	influxdb.conf	to	insure	that	read	and	scan	
queries	would	not	fail	against	timeseries	that	stored	millions	of	data	points.	.	Other	changes	
included	setting	cache-snapshot-write-cold-duration	to	10	seconds	and	setting	the	index-version	
used	to	tsi-1	to	improve	performance	with	larger	dataset.	
	
InfluxDB’s	TSM	storage	engine	uses	compression	by	default.			
	

Test	Methodology		

Test	Design		

It	was	determined	that	a	thread	count	of	128	threads	would	be	used	to	execute	the	benchmark	tests	
for	load	and	run	phases;	128	threads	usually	provide	the	most	consistent	performance.	It	was	
determined	that	two	datasets	of	different	sizes	would	be	used	to	test	each	database’s	scalability	and	
performance	when	operating	on	a	high	cardinality	container.	A	large	dataset	is	useful	in	observing	
how	each	database	compresses	their	data.	One	dataset	of	100	million	records	was	used	in	the	first	
phase	of	testing	and	a	larger	dataset	of	400	million	records	was	used	in	the	following	phase.	The	
records	would	be	spread	amongst	eight	containers	or	metrics	to	match	the	number	of	vCPUs	in	the	
instance.		Each	container	or	metric	would	contain	12.5	or	50	million	records	respectively.		
	
The	100	million	record	dataset	was	roughly	5	GB	in	size	and	would	remain	in	memory.	The	400	
million	record	dataset	was	about	20GB	in	size	and	approximately	60%	would	reside	on	disk	with	
GridDB.	With	InfluxDB,	the	kernel’s	disk	cache	management	system	would	control	what	data	was	
flushed	to	disk	or	kept	in	memory.		
	
Every	record	inserted	by	YCSB-TS	would	consist	of	a	timestamp	as	the	row	key,	three	string	tags,	
and	a	double	value	that	represents	a	metric	reading.	Each	string	tag	would	be	10	characters	long,	
totaling	10	bytes	each.	This	would	make	each	record	roughly	50	bytes	long.	All	data	fields	would	be	
generated	at	random	by	YCSB-TS.	The	range	for	timestamps	in	large	datasets	would	span	roughly	
from	a	time	range	of	1-4	days	with	at	least	millisecond	between	each	timestamp	record.		
	
	
Record	Calculation:	

 ( 12 𝑏𝑦𝑡𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)  +  (3 ∗  (10 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑡𝑎𝑔 ))  +  (8 𝑏𝑦𝑡𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒) = 50 𝑏𝑦𝑡𝑒𝑠	
	



	
	
	

6	

Column	Name	 Column	Type	 Data	Size	 Example	

Time	 Timestamp	(Row-key)	 12	bytes	 1439241005000	

TAG0	 String		 10	bytes	 “Wh64HSAlAU”	

TAG1	 String		 10	bytes	 “dXannLxHhW”	

TAG2	 String	 10	bytes	 “wTRxj0tNW9”	

value	 Double		 8	bytes	 5423.22	
Table	2:	YCSB-TS	Database	Schema	

Methodology	

To	ensure	consistency,	three	trials	were	run	on	the	AWS	instance	to	measure	the	throughputs	and	
latencies	for	each	dataset.	The	median	throughput	and	latency	were	taken	from	the	three	trials.	The	
reason	for	this	decision	was	to	ensure	that	all	measurements	were	due	to	performance	differences	
between	InfluxDB	and	GridDB,	not	from	AWS.		
	
The	head	node	would	begin	in	a	“fresh,	deallocated”	state.	Once	the	AWS	instance	began	running,	
the	local	SSD	and	database	directories	would	be	mounted.	The	AWS	instance	began	by	wiping	all	
the	containers	and	its	data	and	logs	from	each	database	and	by	deploying	their	configuration	files.	
From	there,	either	InfluxDB	or	GridDB	would	be	started	through	an	init	script	or	a	database	
command.			
	
When	running	a	test	against	GridDB	server,	settings	and	statistics	would	be	recorded	with	the	
gs_stat	command;	the	Influx	shell	was	used	for	InfluxDB.		
	
The	YCSB-TS	load	operation	is	executed	on	the	client	node	with	the	appropriate	insertstart,	
insertend,	and	recordcount	parameter	values.	These	values	are	adjusted	depending	on	the	
workload	configuration	and	dataset	size.	After	the	load	phase	completes,	one	of	the	two	workloads	
are	run:	

Workload	A:	Read	only	
Workload	B:	Scan,	Count,	Average,	and	Sum	operations.	

	
More	information	on	the	YCSB-TS	architecture	and	usage	can	be	found	on	the	YCSB-TS	GitHub	page:			

https://github.com/TSDBBench/YCSB-TS	

Collection	and	Aggregation	

Statistics	related	to	the	database	size,	CPU	usage,	and	memory	usage	are	captured	using	Bash	
scripts	after	the	workloads	are	finished.		
	



	
	
	

7	

All	the	output	from	YCSB-TS	was	captured	for	processing	with	bash	scripts	that	are	outputted	into	
log	files.	The	data	in	these	log	files	were	used	for	later	processing	in	spreadsheet	programs.	
Important	output	data	to	monitor	both	during	and	after	YCSB-TS	operation	are	database	disk	usage	
and	how	its	data	is	distributed	among	its	data,	log,	or	wal	directories.	The	purpose	of	monitoring	
this	data	was	to	observe	database	size	and	compression.	
	
Output	from	YCSB-TS	was	captured	for	later	processing	using	bash	scripts	that	are	redirected	to	log	
files.	The	data	from	these	logs	were	used	for	later	processing	in	spreadsheet	programs.	Data	
metrics	like	CPU	usage,	memory	usage,	and	disk	usage	were	recorded	using	bash	scripts	that	
redirected	output	from	top	and	other	commands	to	log	files	as	well.	

Results	

Insert	

The	timestamp	range	for	the	benchmarks	would	range	from	1	to	4	days.	Each	record	would	have	a	
minimum	of	1	millisecond	between	insertions.	Dataset	size	would	range	from	100	million	to	400	
million	records.	The	smaller	dataset	of	100	million	records	was	used	to	test	how	each	database	
performs	with	the	dataset	in-memory.	For	GridDB,	due	to	its	in-memory	architecture,	all	of	the	100	
million	records	fit	in-memory	rather	than	having	to	be	read	from	or	written	to	disk	cache.	On	the	
other	hand,	the	larger	dataset	was	used	to	test	how	each	database	performs	with	a	large	portion	of	
its	data	residing	on-disk.	A	dataset	of	400	million	rows	would	have	over	two-thirds	of	its	data	
stored	and	accessed	on-disk.	Both	databases	were	configured	to	use	compression	to	minimize	use	
of	secondary	storage.	To	prevent	Java	from	running	out	of	heap	space,	the	‘predefinetagstoreused’	
field	was	set	to	false	in	all	workload	configuration	files.	
	
Run	phases	of	the	benchmark	tests	would	be	executed	an	hour	after	all	YCSB-TS	records	were	
inserted	into	either	database.	The	purpose	of	this	delay	was	to	let	each	database	complete	all	
housekeeping	operations	to	ensure	fairness	during	read	and	scan	benchmarks.			
	



	
	
	

8	

	
Figure	1:	Insert	Throughput	

Read		

Workload	A	was	a	workload	configuration	that	consisted	only	of	read	operations	after	all	records	
were	loaded	in	the	database.	Each	read	operation	would	search	for	a	record	that	had	a	specific	
timestamp	as	its	row	key.	The	timestamp	that	would	be	searched	would	be	generated	at	random	by	
YCSB-TS.		
	
For	the	100M	read	test,	GridDB	was	able	to	perform	nearly	8x	more	operations	per	second	than	
InfluxDB	and	for	the	400M	read	benchmark.	With	the	larger	400M	record	set,	GridDB’s	
performance	fell	by	about	a	factor	of	four	while	InfluxDB’s	read	throughput	fell	by	a	factor	of	five	
giving	GridDB	a	near	10x	performance	advantage.	
	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

GridDB	 InmluxDB	 GridDB	 InmluxDB	

100M	 400M	
Higher	Value	Is	Better	

YCSB-TS	Insert	Throughput	
(operations	per	second)	



	
	
	

9	

	
Figure	2:	Read	Throughput.	

Scan		

Workload	B	was	a	workload	configuration	that	consisted	100%	of	scan	operations.	25%	of	these	
operations	were	general	Scan	searches,	25%	were	Count	operations,	25%	were	Sum	operations,	
and	25%	were	Average	operations.		
	
The	general	SCAN	operation	would	search	for	rows	between	two	randomly	generated	timestamp	
values.	The	COUNT	operation	would	count	how	many	rows	in	a	timeseries	container	are	between	
two	timestamp	values.	AVG	and	SUM	would	calculate	the	average	or	sum	of	the	double	values	of	
every	row	found	between	the	time	range	respectively.	These	timestamp	values	used	as	the	query	
range	would	always	be	between	insertstart	and	insertend	fields	specified	in	the	workload	
configuration	files.		
	
YCSB-TS	only	reports	the	throughput	of	scan	operations	during	the	run	phase.	However,	it	does	
report	the	latencies	of	the	Average,	Sum,	Count,	and	Scan	operations.		
	

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	

GridDB	 InmluxDB	 GridDB	 InmluxDB	

100M	 400M	
Higher	Value	Is	Better	

YCSB-TS	Read	Throughput		
(operations	per	second)	



	
	
	

10	

	

	
Figure	3:	Total	Scan/Aggregation	Throughput.	

	

	
Figure	4:	Scan,	Count,	Average,	and	Sum	Latencies.	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

GridDB	 InmluxDB	 GridDB	 InmluxDB	

100M	 400M	
Higher	Value	Is	Better	

YCSB-TS	Scan	Throughput		
(operations	per	second)	

0	

200,000	

400,000	

600,000	

800,000	

1,000,000	

1,200,000	

Scan	 Count	 Average	 Sum	
Lower	Value	Is	Better	

YCSB-TS		Scan	Latency	(microseconds)		

100m	GridDB	 100m	InmluxDB	 400m	GridDB	 400m	InmluxDB	



	
	
	

11	

Database	Size	

To	compare	the	size	efficiency	of	GridDB	and	InfluxDB’s	their	size	of	the	on-disk	data	was	measured	
immediately	after	a	load	was	completed	and	after	the	Write-Ahead-Log	Files	are	flushed.	

	
Figure	5:	Storage	Requirements	

Tabular	Results	

Charts	and	Spreadsheets	
All	throughput	measurements	are	in	the	units	of	“operations	per	second”	and	all	latency	
measurements	are	in	the	units	“microseconds”.	
	
Throughput	(operations	per	second)	

Test	 Size	 GridDB	 InfluxDB	 Advantage	

Load	 100M	 	101,793.7		 15,637.3	 GridDB	651%	Better	

	 400M	 	99,771.1		 15,512.0	 GridDB	643%	Better	

Workload	A	 100M	 	4,013.3		 525.6	 GridDB	764%	Better	

	 400M	 	1,014.6		 102.4	 GridDB	991%	Better	

Workload	B	 100M	 	3,948.0		 599.6	 GridDB	658%	Better	

	 400M	 	535.8		 136.3	 GridDB	393%	Better	

Table	3:	Workload	Throughputs	

	

0	
10	
20	
30	
40	
50	
60	
70	

Immediately	 After	100	Minutes	
Lower	Value	Is	Better	

Storage	Required	(GB)		

100M	GridDB	 100M	InmluxDB	 400M	GridDB	 400M	InmluxDB	



	
	
	

12	

Latencies	(microseconds).	

Operation	 Size	 GridDB	 InfluxDB	 Advantage	

Load	 100M	 	1,244.4		 8,178.7	 GridDB	657%	better	

	 400M	 	1,250.1		 8,246.3	 GridDB	660%	better	

Read	 100M	 	28,681.6		 236,671.5	 GridDB	825%	better	

	 400M	 	122,946.4		 1,141,034.2	 GridDB	928%	better	

Scan	 100M	 	29,711.5		 233,252.0	 GridDB	785%	better	

	 400M	 	235,213.9		 1,035,776.4	 GridDB	440%	better	

Count	 100M	 	29,130.8		 199,063.9	 GridDB	683%	better	

	 400M	 	234,780.9		 888,515.0	 GridDB	378%	better	

	Average	 100M	 	29,082.4		 195,110.7	 	GridDB	671%	better	

	 400M	 	234,858.1		 882,958.3	 GridDB	376%	better	

Sum	 100M	 	29,068.2		 194,563.9	 GridDB	669%	better	

	 400M	 	234,796.2		 884,338.7	 GridDB	377%	better	

Table	4:	Operation	Latencies	

	
Data	Storage	Size		

 	
0		minutes 100	minutes 

100M GridDB 15GB 4.8GB 

 
InfluxDB 4.3GB 4.2GB 

400M GridDB 62GB 21GB 

 
InfluxDB 19GB 17GB 

Table	5:	Storage	Requirements	

	 	



	
	
	

13	

	
CPU	and	Memory	Usage	

Test Workload	Size Measurement GridDB InfluxDB 

Load 100M CPU	Usage 317% 400% 

  Memory	Usage 5.5 GB 2.7GB 

 400M CPU	Usage 305% 405% 

  Memory	Usage 5.8 GB 10.2GB 
  

Workload	A 100M CPU	Usage 288% 735% 

  Memory	Usage 5.5GB 4.1GB 

 400M CPU	Usage 49.6% 722.5% 

  Memory	Usage 5.6GB 10.4GB 

Workload	B 100M CPU	Usage 231% 743% 

  Memory	Usage 5.5GB 5.2GB 

 400M CPU	Usage 61.4% 713% 

  Memory	Usage 5.8GB 10.3GB 

Table	6:	CPU/Memory	Usage.	

Conclusion	
The	in-memory	oriented,	hybrid-storage	architecture	of	GridDB	provided	superior	performance	
compared	to	InfluxDB.	GridDB	maintained	strong	performance	with	in-memory	and	out-of-memory	
database	operations	and	also	managed	to	maintain	a	higher	throughput	and	lower	latency	than	
InfluxDB	even	as	its	database	size	grew.	GridDB	also	maintains	consistent	and	reliable	performance	
as	its	individual	timeseries	containers	grow,	meaning	it	is	not	necessary	to	distribute	a	large	dataset	
among	many	containers.	This	makes	GridDB	more	capable	of	storing	a	longer	and	larger	range	of	
timestamps.		
	
These	benchmark	tests	demonstrate	GridDB’s	superior	ability	to	adapt	to	growing	datasets	and	
many	different	hardware	configurations.	GridDB’s	high	throughput	and	lower	latency	show	it	is	a	
more	scalable	and	flexible	timeseries	Database.		

	 	



	
	
	

14	

Appendices	

gs_node.json	
{ 
 "dataStore":{ 
  "dbPath":"data", 
  "storeMemoryLimit":"6192MB", 
  "storeWarmStart":true, 
  "storeCompressionMode": "COMPRESSION", 
  "concurrency":8, 
  "logWriteMode":1, 
  "persistencyMode":"NORMAL", 
  "affinityGroupSize":4 
 }, 
 "checkpoint":{ 
  "checkpointInterval":"1200s", 
  "checkpointMemoryLimit":"1024MB", 
  "useParallelMode":false 
 }, 
 "cluster":{ 
  "servicePort":10010 
 }, 
 "sync":{ 
  "servicePort":10020 
 }, 
 "system":{ 
  "servicePort":10040, 
  "eventLogPath":"log" 
 }, 
 "transaction":{ 
  "servicePort":10001, 
  "connectionLimit":5000 
 }, 
 "trace":{ 
  "default":"LEVEL_ERROR", 
  "dataStore":"LEVEL_ERROR", 
  "collection":"LEVEL_ERROR", 
  "timeSeries":"LEVEL_ERROR", 
  "chunkManager":"LEVEL_ERROR", 
  "objectManager":"LEVEL_ERROR", 
  "checkpointFile":"LEVEL_ERROR", 
  "checkpointService":"LEVEL_INFO", 
  "logManager":"LEVEL_WARNING", 
  "clusterService":"LEVEL_ERROR", 
  "syncService":"LEVEL_ERROR", 
  "systemService":"LEVEL_INFO", 
  "transactionManager":"LEVEL_ERROR", 
  "transactionService":"LEVEL_ERROR", 
  "transactionTimeout":"LEVEL_WARNING", 
  "triggerService":"LEVEL_ERROR", 
  "sessionTimeout":"LEVEL_WARNING", 
  "replicationTimeout":"LEVEL_WARNING", 



	
	
	

15	

  "recoveryManager":"LEVEL_INFO", 
  "eventEngine":"LEVEL_WARNING", 
  "clusterOperation":"LEVEL_INFO", 
  "ioMonitor":"LEVEL_WARNING" 
 } 
}	

gs_cluster.json	
{ 
 "dataStore":{ 
  "partitionNum":128, 
  "storeBlockSize":"64KB" 
 }, 
 "cluster":{ 
  "clusterName":"defaultCluster", 
  "replicationNum":2, 
  "notificationAddress":"239.0.0.1", 
  "notificationPort":20000, 
  "notificationInterval":"5s", 
  "heartbeatInterval":"5s", 
  "loadbalanceCheckInterval":"180s" 
 }, 
 "sync":{ 
  "timeoutInterval":"30s" 
 }, 
 "transaction":{ 
  "notificationAddress":"239.0.0.1", 
  "notificationPort":31999, 
  "notificationInterval":"5s", 
  "replicationMode":0, 
  "replicationTimeoutInterval":"10s" 
 } 
} 

influxdb.conf	
[meta] 
  # Where the metadata/raft database is stored 
  dir = "/var/lib/influxdb/meta" 
 
  # Automatically create a default retention policy when creating a database. 
  # retention-autocreate = true 
 
  # If log messages are printed for the meta service 
  # logging-enabled = true 
[data] 
  # The directory where the TSM storage engine stores TSM files. 
  dir = "/var/lib/influxdb/data" 
 
  # The directory where the TSM storage engine stores WAL files. 
  wal-dir = "/var/lib/influxdb/wal" 
  # wal-fsync-delay = "0s" 
  index-version = "tsi1" 
  trace-logging-enabled=true 



	
	
	

16	

  # CacheMaxMemorySize is the maximum size a shard's cache can 
  # reach before it starts rejecting writes.  
  cache-max-memory-size = 1048576000 
 
  # CacheSnapshotMemorySize is the size at which the engine will 
  # snapshot the cache and write it to a TSM file, freeing up memory 
  cache-snapshot-memory-size = 26214400 
 
  cache-snapshot-write-cold-duration = "10s" 
# compact-full-write-cold-duration = "4h" 
  # max-concurrent-compactions = 0 
  # The maximum series allowed per database before writes are dropped.  This limit can prevent 
  # high cardinality issues at the database level.  This limit can be disabled by setting it to 
  # 0. 
  max-series-per-database = 0 
 
  # The maximum number of tag values per tag that are allowed before writes are dropped.  This limit 
  # can prevent high cardinality tag values from being written to a measurement.  This limit can be 
  # disabled by setting it to 0. 
  max-values-per-tag = 0 
 
[coordinator] 
  # The default time a write request will wait until a "timeout" error is returned to the caller. 
  # write-timeout = "10s" 
 
  # The maximum number of concurrent queries allowed to be executing at one time.  If a query is 
  # executed and exceeds this limit, an error is returned to the caller.  This limit can be disabled 
  # by setting it to 0. 
  max-concurrent-queries = 128 
 
  # The maximum time a query will is allowed to execute before being killed by the system.  This limit 
  # can help prevent run away queries.  Setting the value to 0 disables the limit. 
  # query-timeout = "0s" 
 
  # The time threshold when a query will be logged as a slow query.  This limit can be set to help 
  # discover slow or resource intensive queries.  Setting the value to 0 disables the slow query logging. 
  # log-queries-after = "0s" 
 
  # The maximum number of points a SELECT can process.  A value of 0 will make 
  # the maximum point count unlimited.  This will only be checked every 10 seconds so queries will not 
  # be aborted immediately when hitting the limit. 
  max-select-point = 0 
 
  # The maximum number of series a SELECT can run.  A value of 0 will make the maximum series 
  # count unlimited. 
  max-select-series = 0 
 
  # The maximum number of group by time bucket a SELECT can create.  A value of zero will max the maximum 
  # number of buckets unlimited. 
  # max-select-buckets = 0 
 
### 
### [retention] 
### 
### Controls the enforcement of retention policies for evicting old data. 
### 
 
[retention] 
  # Determines whether retention policy enforcement enabled. 
  # enabled = true 
 



	
	
	

17	

  # The interval of time when retention policy enforcement checks run. 
  # check-interval = "30m" 
[shard-precreation] 
  # Determines whether shard pre-creation service is enabled. 
  # enabled = true 
 
  # The interval of time when the check to pre-create new shards runs. 
  # check-interval = "10m" 
 
  # The default period ahead of the endtime of a shard group that its successor 
  # group is created. 
  # advance-period = "30m" 
 
 
[monitor] 
  # Whether to record statistics internally. 
  # store-enabled = true 
 
  # The destination database for recorded statistics 
  # store-database = "_internal" 
 
  # The interval at which to record statistics 
  # store-interval = "10s" 
 
[http] 
  # Determines whether HTTP endpoint is enabled. 
  # enabled = true 
 
  # The bind address used by the HTTP service. 
  # bind-address = ":8086" 
 
  # Determines whether user authentication is enabled over HTTP/HTTPS. 
  # auth-enabled = false 
 
  # The default realm sent back when issuing a basic auth challenge. 
  # realm = "InfluxDB" 
 
  # Determines whether HTTP request logging is enabled. 
  log-enabled = false 
 
  # Determines whether detailed write logging is enabled. 
  write-tracing = false 
 
  # Determines whether the pprof endpoint is enabled.  This endpoint is used for 
  # troubleshooting and monitoring. 
  # pprof-enabled = true 
 
  # Determines whether HTTPS is enabled. 
  # https-enabled = false 
 
  # The SSL certificate to use when HTTPS is enabled. 
  # https-certificate = "/etc/ssl/influxdb.pem" 
 
  # Use a separate private key location. 
  # https-private-key = "" 
 
  # The JWT auth shared secret to validate requests using JSON web tokens. 
  # shared-secret = "" 
 
  # The default chunk size for result sets that should be chunked. 
  # max-row-limit = 0 



	
	
	

18	

 
  # The maximum number of HTTP connections that may be open at once.  New connections that 
  # would exceed this limit are dropped.  Setting this value to 0 disables the limit. 
  # max-connection-limit = 0 
 
  # Enable http service over unix domain socket 
  # unix-socket-enabled = false 
 
  # The path of the unix domain socket. 
  # bind-socket = "/var/run/influxdb.sock" 
[subscriber] 
  # Determines whether the subscriber service is enabled. 
  # enabled = true 
 
  # The default timeout for HTTP writes to subscribers. 
  # http-timeout = "30s" 
 
  # Allows insecure HTTPS connections to subscribers.  This is useful when testing with self- 
  # signed certificates. 
  # insecure-skip-verify = false 
 
  # The path to the PEM encoded CA certs file. If the empty string, the default system certs will be used 
  # ca-certs = "" 
 
  # The number of writer goroutines processing the write channel. 
  # write-concurrency = 40 
 
  # The number of in-flight writes buffered in the write channel. 
  # write-buffer-size = 1000 
….. 
[continuous_queries] 
  # Determines whether the continuous query service is enabled. 
  # enabled = true 
 
  # Controls whether queries are logged when executed by the CQ service. 
  # log-enabled = true 
 
  # interval for how often continuous queries will be checked if they need to run 
  # run-interval = "1s" 

	
	
	
	
	
	
	
	
	
	
	
	


