Python Sklearnを使ってGridDBのデータから異常値を検出する

機械学習の技術は、外れ値の発見と処理のプロセスを自動化するのに役立ちます。これにより、異常検知を大規模に実行することができ、IoTやビッグデータアプリケーションのようなデータ集約型の分散システムの要求に応えることができます。 このブログ記事では、人気の高いPythonライブラリscikit-learn (sklearn)と、オープンソースのIoTに最適化された時系列データベースであるGridDBを併用して、異常検知技術を利用する方法を探ります。