
	 1	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

NoSQL	Database	Architectural	Comparison	
June	29,	2017	
Revision	1.00	

	 	

	 2	

		
	

Table	of	Contents	
List	of	Figures	..	2	
Executive	Summary	..	3	
Introduction	...	3	
Cluster	Topology	..	5	
Consistency	Model	...	8	
Partition	Scheme	..	9	
Replication	Strategy	...	10	
Failover	Method	..	12	
Storage	Engine	...	13	
Caching	Mechanism	...	16	
Client	APIs	..	17	
Conclusion	..	19	
	

List	of	Figures	
Figure	1:	Key-Document	Data	Type	...	4	
Figure	2:	Key-Container	Data	Type	..	5	
Figure	3:	Cassandra's	Ring	Topology	..	6	
Figure	4:	MongoDB's	Hierarchal	Topology	..	6	
Figure	5:	GridDB’s	Architecture	..	7	
Figure	6:	GridDB	and	Cassandra	Long	Term	Performance	..	13	
Figure	7:	Cassandra’s	Storage	Engine	..	14	
Figure	8:	GridDB's	Storage	Engine	..	15	
Figure	9:	Cassandra	Caching	..	16	
	
	 	

	 3	

Executive	Summary	
This	white	paper	compares	and	contrasts	Toshiba’s	GridDB	database	to	Cassandra,	
MongoDB,	Riak,	and	Couchbase.	Topics	covered	include	the	logical	and	physical	
cluster	topology,	how	each	database	handles	consistency,	replication,	and	failover,	
as	well	as	the	individual	storage	engine	and	caching	mechanisms	that	are	used.	
Finally,	the	Client	APIs	of	the	reviewed	databases	are	showcased	to	demonstrate	
how	developers	may	build	applications.	

Introduction	
The	term	NoSQL	(or	Not	Only	SQL)	became	prominent	in	the	late	2000s	because	the	
amount	of	data	collected	and	used	by	popular	web	services	began	to	increase	
exponentially.	This	sudden	change	brought	about	new	requirements	for	a	solution	
that	could	scale	better	than	SQL	databases	with	their	tabular	storage	engines	and	
relational	queries.		
	
As	a	whole,	NoSQL	databases	tend	to	scale	out	but	this	is	not	always	the	case.	Some	
databases,	such	as	RocksDB	(not	evaluated	here),	are	meant	for	use	in	a	single	
instance.			

Cassandra	
Cassandra	was	inspired	by	Amazon’s	Dynamo	paper	and	was	initially	developed	by	
Facebook;	its	first	release	was	in	2008.	It	is	written	in	Java	and	many	companies	
currently	contribute	to	it	as	a	top-level	Apache	project	with	the	most	notable	being	
Datastax.		

MongoDB	
10gen	began	developing	MongoDB	in	2007	as	part	of	another	project	before	open	
sourcing	it	in	2009.	10gen	is	now	known	as	MongoDB,	Inc.	and	it	offers	commercial	
support	for	MongoDB.	

Riak	
Riak	is	also	based	on	the	principals	of	Amazon’s	Dynamo	and	is	written	in	Erlang;	it	
was	initially	released	by	Basho	Technologies	in	2009.	Basho	offers	supported	
versions	of	Riak	that	have	additional	features.			

Couchbase	
Couchbase	is	the	merger	of	the	Membase	(first	released	in	2010)	and	CouchDB	(first	
released	in	2005)	projects	and	their	respective	companies	in	2011	with	the	first	
release	of	the	combined	product	in	2012.	It	uses	C/C++,	Erlang,	and	Go	for	different	
components.	CouchDB	has	continued	as	a	separate	project.	

GridDB	
Toshiba	started	GridDB	development	in	2011	with	its	first	commercial	release	
coming	in	2013	--	it	was	then	open-sourced	in	2016.		It	is	written	in	C++	and	has	

	 4	

language	bindings	for	C/C++,	Java,	and	Python.	It	has	also	been	integrated	with	
other	open	source	projects	such	as	MapReduce,	KairosDB,	and	Spark.		
	
Data	Type	
With	traditional	RDBMS	databases,	data	is	stored	in	a	table	with	a	predefined	
structure	which	can	then	be	queried	using	any	of	the	fields.	NoSQL	databases	
however	do	not	all	share	the	same	structure,	different	data	databases	have	different	
data	models.		

Cassandra	
Cassandra	uses	a	key-column	data	schema	that	is	similar	to	a	RDBMS	where	one	or	
more	columns	make	up	the	key.	The	rows	in	a	Cassandra	table	can	be	queried	by	
any	value	but	the	keys	determine	where	and	how	rows	are	replicated.		

MongoDB	
MongoDB	is	a	key-document	database	that	stores	individual	documents	in	a	JSON-
like	format	called	BSON.	Individual	documents	can	be	queried	with	a	key,	field	
values	or	they	can	be	grouped	together	in	a	collection	which	is	analogous	to	a	table	
in	a	RDBMS.		Key-document	databases	are	flexible	but	can	be	slow	due	to	their	
complexity.		
	

	
Figure	1:	Key-Document	Data	Type	

Riak	
Riak	is	a	key-value	database.	The	value	can	be	a	simple	literal	or	it	can	be	a	more	
complex	user-defined	structure.	Riak	does	not	understand	any	part	of	the	value	and	
thus	only	the	key	may	be	used	to	query	the	database.	Keys	can	be	separated	across	
different	namespaces:	these	virtual	keyspaces	are	referred	to	as	buckets.		
	
Riak	supports	using	a	TimeSeries	key	type	but	this	requires	a	different	installation	
and	changes	the	data	model	to	being	tabular,	where	different	tables	can	have	the	
same	time	key	but	different	values	assigned.			

	 5	

Couchbase	
Couchbase	supports	both	key-value	and	key-document	databases.	The	database’s	
keyspace	can	be	separated	by	using	buckets.	By	setting	a	flag,	the	value	can	be	
serialized	using	UTF	characters,	raw	bytes,	Python’s	native	pickle	format,	or	with	a	
user-defined	transcoder.	Like	MongoDB,	documents	are	stored	using	JSON.			

GridDB	
GridDB	is	a	key-container	database.	The	key	can	be	either	any	specified	user	value	
or	a	timestamp.	Each	container	can	be	specified	via	a	key	and	then	can	be	further	
queried	like	a	traditional	RDBMS.		The	key-container	data	type	is	ideal	for	data	
models	used	with	IoT	or	other	applications	that	have	different	groups	of	like	data.		
	

	
Figure	2:	Key-Container	Data	Type	

GridDB	supports	both	regular	Collections	and	TimeSeries	containers.	Collections	
can	use	any	value	as	a	key	while	TimeSeries	Containers	use	a	time	value	that	allow	
for	specialized	handling	within	the	application	amongst	other	features.	Unlike	Riak,	
GridDB	supports	both	Collections	and	TimeSeries	Containers	in	one	installation.	
This	makes	storing	and	accessing	meta-information	about	a	TimeSeries	significantly	
less	onerous	than	having	to	switch	and	manage	between	different	APIs	and	
connections.		

Cluster	Topology	
	
Distributed	services	have	two	common	models,	master/slave	and	peer-to-peer.	The	
master/slave	type	architecture	offers	better	performance	and	has	little	overhead	
but	the	master	node	presents	a	single	point	of	failure.	In	a	peer-to-peer	cluster,	
every	node	is	identical	and	has	the	same	responsibilities	allowing	fault	tolerance	to	
be	achieved	easily	but	overhead	to	maintain	consistency	is	quite	high.	

	 6	

Cassandra	
Cassandra	has	a	peer-to-peer	ring	based	architecture	that	can	be	deployed	across	
datacenters.		A	Cassandra	installation	can	be	logically	divided	into	racks	and	the	
specified	snitches	within	the	cluster	that	determine	the	best	node	and	rack	for	
replicas	to	be	stored.		
	

	
Figure	3:	Cassandra's	Ring	Topology	

MongoDB	
MongoDB	has	a	hierarchal	architecture	built	out	of	one	or	more	query	routers	
named	mongos	and	then	one	or	more	shards	that	run	mongod,	which	can	be	built	
using	replica	sets.	Each	replica	set	has	a	primary	node	and	then	multiple	secondary	
nodes.		

	
Figure	4:	MongoDB's	Hierarchal	Topology	

	 7	

Riak	
Riak	has	a	peer-to-peer	master-less	architecture	with	multiple	datacenter	support	
available	in	the	commercial	version.	With	multiple	datacenter	support,	one	
datacenter	will	act	as	the	primary	and	the	others	will	synchronize	to	it.		

Couchbase	
Couchbase	has	a	peer-to-peer	architecture	where	each	node	contains	a	data,	cluster	
manager,	index	and	query	service.	With	Couchbase’s	multiple	datacenter	support,	
updates	can	flow	from	one	datacenter	to	others	or	they	can	flow	bilaterally	with	
conflicts	typically	being	resolved	by	each	cluster	being	the	owner	for	a	certain	set	of	
partitions.		

GridDB	
GridDB	has	a	hybrid	master/slave	architecture.	All	nodes	in	the	cluster	contain	
partitioning	data	required	to	organize	the	cluster	but	only	one	node	acts	as	the	
master.		In	the	case	of	a	master	failure,	a	bully	election	is	held	and	another	node	is	
quickly	promoted	to	being	the	master.	This	hybrid	architecture	provides	both	the	
high	performance	of	a	master/slave	architecture	and	high	reliability	but	without	a	
single	point	of	failure.	
	
Having	any	node	being	able	to	take	over	for	a	failed	master	prevents	potential	
problems,	such	as	a	risky	single-point	of	failure,	like	in	MongoDB	where	there	are	
only	a	small	number	of	replica	mongos	instances.	

	
Figure	5:	GridDB’s	Architecture	

	 	

	 8	

Consistency	Model	
	
With	distributed	databases,	individual	designs	must	trade	off	between	consistency,	
availability,	and	partition	tolerance.	This	theorem	was	first	described	by	Eric	
Brewer	in	the	late	1990s	and	is	known	as	the	CAP	theorem.1	
	
Consistency	(C)	is	defined	by	the	database	always	returning	the	latest	update	or	an	
error	if	it	can’t.	Availability	(A)	is	defined	as	the	database	always	returning	a	result,	
even	if	it’s	not	the	latest.	Partition-tolerance	(P)	means	the	database	will	continue	to	
operate	despite	partial	node	or	network	failures	between	nodes.		
	
Partition	tolerance	is	a	must	with	distributed	databases,	leaving	the	remaining	
choice	to	be	between	Consistency	and	Availability.		Consistency	can	be	implemented	
in	two	ways:	eventual	or	immediate.		
	
Eventual	consistency	allows	different	nodes	that	may	have	copies	of	the	same	data	
item	to	update	their	own	copies	and	make	them	available	for	reading	without	being	
concerned	that	if	that	data	is	consistent	with	the	copies	data	items	of	different	nodes.	
The	premise	is	that	eventually	all	accesses	to	that	data	item	will	return	the	same,	
most	recently	updated	version	of	that	data	item.		
	
Immediate	consistency	involves	multiple	nodes	having	to	agree	on	a	data	item	after	
the	item	is	updated	before	it	can	be	made	available	to	access.	This	is	to	ensure	that	
every	access	for	that	data	item,	for	example	a	row,	returns	a	consistent	and	up-to-
date	version.	This	premise	can	have	the	cost	of	having	higher	overhead	and	lower	
availability	whenever	an	item	is	updated.	

Cassandra	
Cassandra	is	typically	an	available,	partition	tolerant	(AP)	database	but	has	tuneable	
data	consistency	parameters.		A	user	can	change	both	write	and	read	consistency	
levels	ranging	from	having	no	consistency	to	requiring	all	nodes	be	consistent,	with	
added	options	to	enforce	consistency	between	datacenters	(or	not).				

MongoDB	
MongoDB	is	a	consistent,	partition	tolerant	(CP)	database	by	default,	but	it	can	be	
configured	to	read	from	the	secondary	nodes	within	a	replica	set	allowing	for	the	
possibility	of	older	data	to	be	served.	2	
	
Updates	to	an	individual	document	are	atomic,	meaning	a	client	will	always	read	
either	the	old	version	or	the	new	version,	but	never	a	half-updated	document.	By	
default,	when	multiple	documents	are	updated	in	a	single	query	they	will	be	
updated	individually,	meaning	a	client	can	read	some	updated	documents	and	some	
old	documents.	

																																																								
1	https://en.wikipedia.org/wiki/CAP_theorem	
2	https://docs.mongodb.com/manual/replication/	

	 9	

Riak	
Like	Cassandra,	which	is	also	based	on	the	ideas	presented	in	Amazon	Dynamo	
White	Paper,	Riak	is	eventually	consistent,	meaning	that	the	default	configuration	is	
considered	to	be	an	AP	database.	Consistency	can	be	enforced	by	setting	
configuration	variables	that	ensure	there	is	a	quorum	during	a	read.		

Couchbase	
A	single	Couchbase	cluster	by	default	is	a	consistent,	partition	tolerant	cluster	but	
can	tuned	to	favor	availability	over	consistency.		A	multi-datacenter	Couchbase	
installation	is	always	eventually	consistent.	

GridDB	
GridDB	is	the	only	fully	ACID	(atomicity,	consistency,	isolation,	and	durability)	
compliant	database3	reviewed	in	this	white	paper.	The	ACID	compliance	within	a	
container	guarantees	a	consistent,	partition	tolerant	(CP)	database.	GridDB	allows	
the	user	to	configure	the	database	to	allow	immediate	consistency	or	eventual	
consistency.	

Partition	Scheme	
	
Partitioning	data	is	a	core	requirement	for	a	multi-node	database	and	the	five	
databases	in	this	whitepaper	use	similar	but	varying	methodologies	to	spread	data	
across	their	nodes.		

Cassandra	
Cassandra	uses	the	first	part	of	a	row’s	primary	key	to	build	the	partition	key.	From	
the	partition	key,	Cassandra	distributes	rows	amongst	nodes	in	the	cluster.	This	
means	extra	care4	must	be	taken	when	choosing	a	primary	key	to	ensure	data	is	
spread	evenly	across	the	cluster.	

MongoDB	
MongoDB	uses	a	specified	shared	key	to	partition	a	collections	documents	across	
the	nodes	in	the	cluster.	The	shared	key	can	be	either	a	single	field	or	compound	
index	(an	index	made	up	of	multiple	fields	in	each	document).	The	shared	keys	are	
immutable,	meaning	that	you	can	neither	switch	to	new	fields	nor	update	the	values	
of	the	shard	key	field(s).	

Riak	
In	Riak	KV,	partitions	are	automatically	spread	across	virtual	nodes	(vNodes)	by	
calculating	a	hash	of	the	bucket	and	key.	A	vNode	is	a	logical	division	of	a	cluster’s	
ring	size	across	its	nodes.	
		

																																																								
3	https://griddb.net/en/docs/documents/3-5_transactions-and-acid.php	
4	http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling	

	 10	

With	Riak	TS,	rows	are	partitioned	based	on	a	specified	partition	key	of	one	or	more	
columns	in	the	table.			

Couchbase	
Couchbase	calls	its	internal	partitions	vBuckets.	Documents	are	mapped	to	vBuckets	
based	on	the	hash	of	their	document	ID5.	Document	IDs	can	be	automatically	
generated	or	specified	by	the	application	but	are	always	unique.			

GridDB	
A	GridDB	partition	is	a	logical	area	that	stores	whole	containers	and	is	not	directly	
visible	by	a	user.	A	hash	algorithm	that	uses	the	container	key	as	the	seed	
determines	which	partition	a	container	is	assigned	to.		An	allocation	table	of	the	
node	to	each	partition	is	called	a	partition	table.		
	
The	master	node	distributes	this	partition	table	to	the	follower	nodes	or	client	
libraries.	By	referring	to	this	partition	table,	the	owner	node	and	backup	node	
belonging	to	a	certain	container	can	be	made	known.	
	
As	GridDB	stores	whole	containers	in	partitions,	accesses	within	a	container	are	
always	fast		and	scale	well	as	internode	communication	or	coordination	is	not	
required.	

Replication	Strategy	
	
Data	replication	is	how	distributed	databases	are	able	to	maintain	availability	after	a	
node	fails	by	placing	a	configurable	number	of	copies	or	replicas	of	every	partition	
on	different	nodes.		

Cassandra	
Cassandra	has	two	different	replication	strategies6	that	can	be	set	on	a	per	table	
basis	along	with	the	number	of	replicas.	With	SimpleStrategy,	partition	scheme	sets	
the	first	node	the	replica	is	stored	on	and	then	replicas	are	stored	on	the	next	node	
in	ring.	NetworkTopologyStrategy	takes	into	consideration	that	nodes	in	the	same	
rack	often	fail	at	the	same	time,	so	replicas	are	stored	on	the	first	node	in	the	ring	
that	is	in	a	different	rack.		

MongoDB	
MongoDB	uses	replica	sets7	to	store	multiple	copies	of	its	dataset.	Each	replica	set	
consists	of	multiple	mongod	processes	--	a	primary	and	one	or	more	secondaries.		
Each	replica	set	is	manually	defined	in	each	node’s	mongod	configuration	file	and	
the	mongo	shell.	An	end	user	is	able	to	include	nodes	from	different	datacenters	in	
each	replica	set.	Typically,	a	client	reads	from	the	primary	replica	set,	but	MongoDB	

																																																								
5	https://developer.couchbase.com/documentation/server/3.x/admin/Concepts/concept-vBucket.html	
6	http://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureDataDistributeReplication_c.html	
7	https://docs.mongodb.com/manual/replication	

	 11	

can	be	configured	to	read	from	the	secondaries	as	well.	A	client	will	always	write	to	
the	primary	which	will	then	propagate	the	update	to	the	secondaries.		

Riak	
Riak	is	built	around	replication8	and	the	number	of	replicas	can	be	set	on	a	per	
bucket	basis.	Replicas	are	assigned	to	the	specified	number	vNodes	that	may	not	
actually	be	on	different	physical	machines.	A	quorum	of	a	configurable	number	of	
vNodes	responses	to	a	read	request	is	required	for	the	read	to	be	successful.			

Couchbase	
Couchbase	offers	a	per-bucket	configurable	level	of	replication	and	every	node	
contains	both	active	data	and	replica	data.	Reads	and	writes	are	always	to	the	node	
which	has	the	active	data.	That	is	until	a	failure	occurs	in	which	case	the	cluster-
wide	map	of	where	data	should	be	retrieved	from	is	updated,	pointing	to	the	replica	
data.		

GridDB	
Replication	levels	can	be	set	for	the	entire	cluster	with	GridDB.	Each	partition	has	a	
node	that	is	the	owner,	enough	backup	nodes	to	satisfy	the	configured	replication	
level,	and	any	catch	up	nodes	that	are	required.	If	GridDB	is	configured	for	
immediate	consistency,	the	partition’s	owner	handles	all	client	read	and	write	
requests	and	propagates	updates	to	the	backup	nodes.	If	configured	for	eventual	
consistency,	the	replicas	may	respond	to	read	requests.	
	
Catch	up	nodes	are	used	when	there	are	not	enough	backup	nodes	to	satisfy	the	
replication	level	or	if	there	are	other	problems	with	the	backup	nodes.	The	master	
node	first	transmits	large	memory	blocks	of	its	partition	data	to	the	catch	up	node	
and	then	transfers	update	logs	until	the	catch	up	node	is	in-sync	with	the	partition	
owner	and	can	be	promoted	to	a	backup	node.	
	
This	strategy	is	similar	to	Couchbase	and	MongoDB,	reads	and	writes	are	direct	to	
the	partition	owner	rather	than	requiring	a	quorum	of	peer-to-peer	nodes.		
	 	

																																																								
8	http://docs.basho.com/riak/kv/2.2.3/learn/concepts/replication/	

	 12	

Failover	Method	
	
With	distributed	databases,	failure	of	a	node	is	a	given	over	the	lifetime	of	the	
product.		How	the	database	handles	both	the	failure	and	recovery	of	a	node	is	
critical	to	how	it	will	be	adapted	to	various	applications.	

Cassandra	
Within	a	Cassandra	database,	pre-defined	gossip	nodes	track	the	state	of	all	of	the	
nodes.	Gossip	nodes9	collect	the	state	of	other	nodes	both	directly	to	or	from	other	
gossip	nodes.	Rather	than	use	a	fixed	threshold	to	mark	nodes	as	down,	the	gossip	
nodes	use	a	sliding	window	that	considers	the	operating	conditions	of	the	cluster	as	
well	as	the	configurable	threshold	to	account	for	the	differences	between	operating	
in	the	public	cloud	or	a	high	performance	LAN	or	somewhere	in	between.		
	
After	a	failed	node	comes	back	online,	it	will	try	to	replay	the	hints	for	rows	it	owns	
stored	by	other	nodes	during	the	outage.	If	the	node	was	down	for	longer	than	the	
configurable	hint	storage	window,	a	manual	node	repair	must	be	run	to	re-replicate	
the	row	data	written	during	the	downtime	to	ensure	consistency.	

MongoDB	
MongoDB’s	replica	sets	use	a	simple	heartbeat	between	members	every	two	
seconds.	If	a	heartbeat	has	no	response	within	10	seconds,	the	node	is	marked	as	
being	down.	If	the	down	node	is	the	primary,	an	election	will	be	held	and	one	of	the	
secondaries	will	become	the	primary	and	begin	accepting	writes.	In	the	case	of	a	
network	partition,	the	primary	will	demote	itself	if	it	cannot	reach	the	majority	of	its	
nodes	while	the	unreachable	nodes	will	carry	out	an	election	and	one	will	be	
promoted	to	the	primary.		

Riak	
Like	Cassandra,	Riak	uses	gossip	protocol,	quorums,	and	hinted	hand	offs	to	deal	
with	failures	within	the	cluster.		

Couchbase	
The	Couchbase	Cluster	Manager	monitors	the	status	of	all	nodes	in	the	cluster	and	if	
it’s	configured	to	do	so	will	trigger	auto-failover10.	Auto-failure	will	mark	the	node	
as	offline	and	transfer	ownership	of	its	owned	vBuckets	to	other	nodes.		If	the	node	
is	not	re-added,	a	manual	rebalance	will	need	to	take	place	that	permanently	
reassigns	vBucket	ownership	and	replicas.	If	the	node	is	added	back	to	the	cluster,	
recovery	is	performed	manually	either	using	the	delta	or	full	recovery	method.	The	
delta	method	incrementally	catches	the	node	up	to	the	latest	state	while	full	
recovery	removes	the	stale	data	and	a	full	rebalance	is	then	performed.		

																																																								
9	http://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureDataDistributeFailDetect_c.html	
10	https://developer.couchbase.com/documentation/server/current/clustersetup/automatic-failover.html	

	 13	

GridDB	
The	GridDB	master	monitors	all	the	nodes	in	a	GridDB	cluster.	When	a	node	does	
not	respond	to	the	master’s	heartbeat,	the	master	marks	that	node	as	down	and	
assigns	the	partitions	it	owns	to	the	other	replicas.	If	after	failure,	the	configured	
replication	level	is	not	met,	another	node	will	be	assigned	the	role	of	catch-up	and	
that	partition	will	begin	transferring	large	blocks	of	data.	After	the	initial	high	speed	
memory	synchronization	is	complete,	it	will	be	transferred	

Storage	Engine	
	
The	details	of	how	each	of	the	different	NoSQL	databases	store	their	data	are	
different.	There	are	two	main	themes:	log	structured	merge	(LSM)	tree	files	that	
require	compaction	(which	involves	reducing	disk	space	through	old	and	unused	
date	from	the	database	used	by	Cassandra,	Riak,	and	Couchbase)	and	checkpoint	
writes	of	data	tables	that	are	used	by	MongoDB	and	GridDB.		
	

	
Figure	6:	GridDB	and	Cassandra	Long	Term	Performance	

The	LSM-tree	based	databases	present	excellent	write	and	update	performance	
while	the	checkpoint	databases	can	offer	consistently	better	read	performance	as	
shown	by	the	above	figure.	Compaction	also	causes	the	system	to	see	a	spike	in	both	
disk	usage	and	I/O	activity.	This	sort	of	activity	must	be	planned	for	as	this	can	
adversely	affect	speed	and	performance.	

	 14	

Cassandra	
Cassandra	stores	its	data	in	a	log	merge	tree	that	avoids	reads	before	writes.	
Updates	are	initially	appended	to	the	commit	log	on	disk	and	the	in-memory	
memtable.	The	commit	log	allows	data	persistence	during	sudden	failures.	When	the	
memtable	exceeds	the	configured	size	it	gets	flushed	to	disk	as	multiple	LSM-tree	
SSTables	(Sorted	String	Tables	of	keys	and	values	sorted	by	key)	per	table/partition.		
	

	
Figure	7:	Cassandra’s	Storage	Engine	

	
As	Cassandra	does	not	update	the	SSTables	in	place,	they	must	be	compacted.	For	
Cassandra	to	remove	old	or	deleted	data,	the	most	recent	version	of	the	records	will	
be	moved	to	a	new	SSTable	and	then	unlink	the	old	SSTable.		

MongoDB	
MongoDB	supports	multiple	backend	storage	engines	but	recommends	using	the	
WiredTiger	backend	for	all	new	installations.	WiredTiger	can	utilize	either	a	B-tree	
or	LSM-tree	structure	and	uses	checkpoint	commits	to	flush	its	structured	memory	
image	to	disk.	Between	checkpoints,	WiredTiger	writes	out	a	write-ahead	log	or	
journal	that	ensures	data	persistence	between	checkpoints.			

Riak	
Riak	has	a	pluggable	storage	engine	with	three	default	options:	Bitcask,	LevelDB,	
and	Memory.	Bitcask	is	the	default	storage	engine	and	is	append-only,	requiring	
compaction	that	keeps	the	entire	key	space	mapping	in	memory.	The	LevelDB	
backend	utilizes	a	fork	of	Google’s	LevelDB	database	using	an	LSM	structure	that	
allows	the	keyspace	to	be	larger	than	the	memory	size.	The	Memory	backend	uses	
in-memory	tables	and	has	zero	persistence.			

	 15	

Couchbase	
Couchbase	uses	two	different	storage	engines,	Couchstore	for	data	and	ForrestDB	
for	indices.	Both	Couchstore	and	ForrestDB	are	append-only	storage	engines	that	
require	compaction,	although	ForrestDB	has	a	circular	re-use	mode	that	allows	new	
writes	to	take	space	in	the	log	that	was	freed	by	old	or	deleted	records.		

GridDB	
GridDB	is	intended	to	keep	most	of	the	database	in-memory	and	uses	a	method	
similar	to	MongoDB	to	persist	data.	Its	internal	memory	structure	is	flushed	to	disk	
on	a	checkpoint	interval	while	maintaining	a	transaction	log	between	checkpoints.	

	
Figure	8:	GridDB's	Storage	Engine	

	
When	the	database	outgrows	the	configured	memory	utilization,	data	not	likely	to	
be	used	soon	is	freed	from	memory.	This	allows	more	database	transactions	to	
occur	in-memory,	meaning	GridDB	does	not	access	the	disk	as	frequently	thus	
offering	higher	performance.		
	
Even	when	the	database	does	not	fit	in	memory,	GridDB’s	performance	remains	
remarkably	stable	without	the	user	having	to	perform	any	regular	maintenance.	
Fixstars	showcased	this	in	benchmarks	performed	in	201611.	
	

																																																								
11	https://griddb.net/en/blog/griddb-and-cassandra-ycsb-benchmarks/	

	 16	

Caching	Mechanism	
Caching	mechanisms	are	closely	related	to	the	databases’	storage	engines	and	vary	
considerably	between	the	discussed	databases	in	this	whitepaper	with	Cassandra,	
MongoDB,	and	Riak	not	using	a	specified	cache	system	at	all	by	default.	GridDB	
attempts	to	keep	the	entire	database	in	memory	if	capacity	allows.		

Cassandra	
Cassandra	has	two	caches,	a	row	cache	and	a	key	cache	that	are	both	disabled	by	
default.	The	row	cache	is	meant	to	be	used	by	very	hot	records	that	are	used	often.	
Both	caches	can	be	configured	for	maximum	size	and	record	age.	The	key	cache	is	
recommended	to	be	10%	of	the	heap	size	or	100MB.		
	

	
Figure	9:	Cassandra	Caching	

To	enable	better	caching12,	many	Cassandra	users	add	an	additional	layer	and	add	a	
tool	like	memcached	to	their	stack	to	increase	performance.		

MongoDB	
MongoDB	will	keep	working	data	up	to	the	configured	size	in	memory	but	does	not	
store	the	results	of	queries	in	memory.		By	default,	WiredTiger	uses	half	of	the	
system	memory	minus	1GB	for	its	cache	allowing	the	filesystem	cache	for	itself	and	
other	applications	to	fill	the	remainder.		

Riak	
The	caching	mechanism	used	by	Riak	depends	on	its	backend	storage	option.	With	
Bitcask,	Riak	relies	exclusively	on	the	filesystem	cache	provided	by	the	operating	
system.	The	LevelDB	backend,	on	the	other	hand,	has	a	configurable	cache	size.	As	
																																																								
12	https://www.datastax.com/dev/blog/maximizing-cache-benefit-with-cassandra	

	 17	

previous	Levels	are	stored	in	the	cache,	only	one	disk	read	should	be	required	for	a	
query.	Of	course,	the	memory	backend	keeps	the	entire	database	in	memory,	
making	further	caching	redundant.	
	
With	Riak	Enterprise,	Basho	also	offers	a	Cache	Proxy	service	that	enables	users	to	
integrate	Redis	into	their	stack.		

Couchbase	
Couchbase	is	built	by	engineers	of	memcached	software13	and	touts	a	memory-first	
architecture.		Actual	row	data	is	kept	in	a	memcached	system	similar	to	cache	while	
the	Index	and	Search	services	store	the	most	popular	indices	in	memory.	The	Query	
service	doesn’t	store	the	actual	query	results	but	does	cache	the	processing	streams	
required	to	calculate	the	query	response.		

GridDB	
GridDB	is	an	in-memory	database	with	persistence	that	will	store	up	to	the	
configured	amount	of	data	in	memory	and	recommends	that	most	of	the	system	
memory	is	assigned	to	it.		GridDB	uses	Least	Recently	Used	(LRU)	and	Data	affinity	
algorithms	to	determine	which	records	stay	in	memory	and	which	records	remain	
only	in	disk.	These	algorithms	help	ensure	only	the	most	relevant	and	queried	data	
in	the	database	stay	in	the	cache,	which	can	aid	in	the	overall	efficiency	of	the	
application.	
	
The	large	amount	of	memory	given	to	the	cache	along	with	the	optimized	cache	
management	functions	allow	GridDB	to	offer	significantly	higher	cache	hit	rates	
allowing	high	performance	without	having	to	incorporate	a	second	caching	system	
like	memcached	or	Redis.	

Client	APIs	
How	the	developers	are	able	create	applications	that	read	and	write	to	the	
databases	are	equally	critical	to	the	other	database	characters	for	a	project	to	be	
successful.	The	scope	of	the	NoSQL	database	client	API’s	varies	significantly	with	
GridDB	and	Cassandra	having	featureful	query	languages	while	Riak	requires	third	
party	tools	to	offer	features	like	search.			

Cassandra	
Applications	use	Cassandra	Query	Language	(CQL)	to	interact	with	a	Cassandra	
database.	As	Cassandra’s	data	type	is	most	similar	to	SQL,	it	makes	sense	that	CQL	is	
the	most	similar	to	SQL,	sharing	commands	such	as	CREATE,	SELECT,	INSERT,	
UPDATE,	ALTER,	DROP	as	well	as	aggregation	functions.	The	biggest	difference	
between	SQL	and	CQL	is	that	CQL	does	not	directly	support	joins	but	joins	can	be	
completed	using	Spark14.		
	
																																																								
13	https://developer.couchbase.com/documentation/server/current/architecture/managed-caching-layer-architecture.html	
14	https://www.datastax.com/2015/03/how-to-do-joins-in-apache-cassandra-and-datastax-enterprise	

	 18	

INSERT	INTO	items	(id,	number)	VALUES	(“foo”,	25);	
INSERT	INTO	items	(id,	number)	VALUES	(“bar”,	42);	

	
SELECT	*	FROM	items	WHERE	number	<	30;	

MongoDB	
MongoDB’s	API	differs	depending	on	the	programming	language15	used	for	the	
application.	In	most	cases	either	native	type	dictionaries	or	parsable	JSON	strings	
are	provided	to	insert	records.	Fetch	queries	can	either	be	built	using	a	JSON	
structure	or	using	simple	operators	such	as	eq().	
	
Python	Insert:	
	
db.items.insert_many([

{"id": "foo",
"number": 25 },
{“id”: “bar”,
“number”: 52 }

])
	
Java	Query:	

collection.find(lt("number", 30)));
collection.find(eq("name", "456 Cookies Shop"))

Riak	
Riak	can	use	both	an	HTTP	or	a	protocol	buffer	API.	Both	offer	GET	and	PUT	to	push	
or	fetch	key-value	pairs.	Search	queries	of	user-defined	indices	can	be	done	using	
Riak’s	Solr	integration.16	
	
myBucket.store("foo",	25).execute();		
myBucket.store("bar",	52).execute();		
	
Integer	foo	=	myBucket.fetch(“foo”,	Integer);	
Integer	bar	=	myBucket.fetch(“bar”,	Integer);	

Couchbase	
Couchbase	has	a	both	asynchronous	and	synchronous	APIs	with	simple	get/put	
semantics	available	to	applications.17		
	
JsonObject	foo		=	JsonObject.empty().put("number",	25)	
JsonObject	bar		=	JsonObject.empty().put("number",	52)	
JsonDocument	fooResp	=	bucket.upsert(JsonDocument.create("foo",	foo););	
JsonDocument	barResp	=	bucket.upsert(JsonDocument.create("bar",	bar));	

																																																								
15	https://docs.mongodb.com/manual/tutorial/query-documents/	
16	http://docs.basho.com/riak/kv/2.2.3/developing/usage/search/	
17	https://developer.couchbase.com/documentation/server/3.x/developer/java-2.1/java-intro.html	

	 19	

	
JsonDocument	foo	=	bucket.get(“foo”);	
JsonDocument	bar	=	bucket.get(“foo”);	

GridDB	
GridDB	can	be	queried	either	through	its	API	or	via	TQL.	TQL	is	a	small	subset	of	
SQL	that	allows	developer	to	perform	basic	operations	including	search	and	
aggregation.		
	
Item	foo	=	new	Item(“foo”,	25);	
Item	bar	=	new	Item(“bar”,	52);	
collection.put(foo);	
collection.put(foo);	
	
Query<Item>	=	collection.query(“SELECT	*	WHERE	number	<	30”,	
Item.class);	

Like	Cassandra,	GridDB	supports	the	standard	aggregation	functions	like	MIN,	MAX,	
AVERAGE	and	also	includes	specialized	TimeSeries	functions	such	as	TIME_AVG,	
which	provides	the	time-weighted	average	of	a	field.	TIME_NEXT	provides	a	result	
that	is	identical	with	or	just	after	the	specified	timestamp	or	TIME_SAMPLING	that	
returns	rows	that	match	the	specified	interval	in	the	given	time	frame.		

Conclusion	
To	summarize,	GridDB	is	very	much	a	hybrid	database.	It	has	both	a	hybrid	
master/slave	architecture	where	the	database	is	an	efficient	master/slave	
architecture	but	any	of	the	nodes	may	be	promoted	to	master	in	case	of	failure,	and	
a	hybrid	in-memory	persistent	storage	engine	where	requests	may	be	quickly	
served	from	memory	but	the	database	can	also	grow	past	the	bounds	of	a	system’s	
available	memory.	
	
GridDB	has	a	multi-faceted	approach	to	scalability	as	well;	with	its	key-container	
data	type,	efficient	partitioning	of	data,	and	an	storage	engine	that	does	not	require	
maintenance.	It	can	scale	not	only	in	IOPS	or	database	size,	but	also	in	the	ease	of	
developing	applications	with	a	large	number	of	data	sources.	
	
As	we’ve	shown,	GridDB	has	a	unique	combination	of	features	that	will	allow	it	to	
excel	in	many	application	fields,	including	storing	the	machine	generated	data	like	
that	of	IoT	devices.	As	no	database	is	perfect,	it	is	hoped	that	the	preceding	
whitepaper	was	a	useful	review	of	the	five	NoSQL	databases.	Not	all	databases	are	
created	equal	–	they	all	have	common	and	differing	features	and	careful	
consideration	is	required	before	selecting	a	database	for	a	particular	application	to	
ensure	that	the	goals	of	the	project	can	be	met.	
		

