

GridDB Achieves 5 Million Writes Per Second & 60 Million
Reads Per Second with only 20 Nodes on Google Cloud

March 20, 2020
Revision 1.00

Table of Contents

Introduction 2

Cloud Configuration 2

Client Software 3

GridDB Configuration 3

Results 3
Operations Per Second 4
Latency 5
Cost Metrics 5

Conclusion 6

Introduction

GridDB is a super fast database for IoT and Big Data applications developed by Toshiba
Digital Solutions Corporation. It has a unique key-container data model that is ideal for
storing sensor data, a “memory first, storage second” architecture that provides incredible
performance and easily scales out to up to 1,000 nodes.

Several reports have been published over the last few years of databases including
Cassandra , Aerospike , and Couchbase that were able to sustain one million 12 3 4

writes-per-second running on public cloud services. We (Fixstars) and the GridDB team took
that as a challenge and decided to see how much further we could scale GridDB and drive
down the performance-per-dollar.

While these tests showcase GridDB’s excellent performance, they also showcase best
practices when designing a GridDB IoT, IIoT, and other applications that require high
velocity write performance.

Cloud Configuration

Google Cloud Platform was used to run the benchmark. We used n1-standard-8 instance
types with a 375GB SSD each and with n1-standard-8 instances eight vCPUs and 30GB of
memory published per instance pricing was 0.042/hour. A 1:1 ratio of server and client

1 https://medium.com/netflix-techblog/revisiting-1-million-writes-per-second-c191a84864cc
2 https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-compute-engine.html
3 https://cloudplatform.googleblog.com/2014/12/aerospike-hits-one-million-writes-Per-Second-with-just-50-Nodes-on-Google-Compute-Engine.html
4 https://blog.couchbase.com/couchbase-server-hits-1m-writes-with-3b-items-with-50-nodes-on-google-cloud/

https://medium.com/netflix-techblog/revisiting-1-million-writes-per-second-c191a84864cc
https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-compute-engine.html
https://cloudplatform.googleblog.com/2014/12/aerospike-hits-one-million-writes-Per-Second-with-just-50-Nodes-on-Google-Compute-Engine.html
https://blog.couchbase.com/couchbase-server-hits-1m-writes-with-3b-items-with-50-nodes-on-google-cloud/

instances were used: for example, for 3 servers, 3 clients were used and for 5 servers, 5
clients were used and so on.

From prior experience, we knew that GridDB workloads like we had planned would be I/O
bound and that GCP’s SSD offered the best performance value ratio. The fast storage
combined with GCP’s Jupiter networking fabric that offers faster 16 gigabit network egress 5

means that GCP is an ideal platform for GridDB allowing us to achieve near linear scalability
from 3 - 20 server instances.

Client Software

A new benchmark client was written in Java with maximum performance in mind. The client
would read or write to one container per thread per process eliminating any lock contention.

Like the other databases who have published “1 Million Writes” successes, each record was
200 bytes and 100M records were inserted and read for each trial.

GridDB Configuration

GridDB’s configuration was changed from the default parameters with the following settings:

● storeMemoryLimit: 20480MB
● checkpointMemoryLimit: 4096MB

○ Use as much memory for GridDB as possible leaving just enough memory for
operating system and other required applications.

● concurrency: 8
○ One worker thread per CPU core.

● storeCompressionMode: COMPRESSION
○ Reduce disk I/O.

● replicationNum: 3
○ Each piece of data is stored on three instances.

Results

With just 3 nodes, GridDB was close to completing 1 million writes per second with 897,718
operations per second. Performance was able to scale linearly as servers were added, with
20 servers being able to achieve our goal of 5 million writes-per-second.

5 https://cloud.google.com/blog/products/networking/google-cloud-networking-in-depth-how-andromeda-2-2-enables-high-throughput-vms

https://cloud.google.com/blog/products/networking/google-cloud-networking-in-depth-how-andromeda-2-2-enables-high-throughput-vms

Three GridDB servers are able to perform just over 6 million reads per second while 20
servers performed over 60 million reads per second.

Operations Per Second
Each GridDB server was able to perform at least 250,000 writes per second and read at
least 2 million records per second. This consistent performance makes GridDB ideal for
applications where data is ingested continuously at high volumes such as Industry 4.0,
financial markets, and both Consumer and Industrial IoT.

Number of Servers Write Ops/Sec Read Ops/Sec

3 897,718 6,103,514

5 1,329,944 13,133,648

10 2,859,518 37,376,131

20 5,735,360 62,851,138

Latency
Like YCSB, our benchmark tool doesn’t directly measure latency instead it calculates
median latency per host using the formula, latency = 1 / operations per second which is the
average time each operation takes. Low latency is imperative for real time analytics,

monitoring, and visualization applications where having the most recent data available
ensures the optimal business decisions are made.

 Min Latency Max Latency Average Latency

3 Servers Write 2.55 us 4.05 us 3.34 us

 Read 0.45 us 0.51 us 0.49 us

5 Servers Write 1.64 us 5.73 us 3.76 us

 Read 0.29 us 0.41 us 0.38 us

10 Servers Write 0.35 us 4.08 us 1.92 us

 Read 0.03 us 0.29 us 0.15 us

20 Servers Write 2.33 us 4.85 us 3.49 us

 Read 0.29 us 0.38 us 0.32 us

Cost Metrics

A single server used for these tests costs $0.42 per hour. A small budget of only $1,500 per
month is required to achieve 1M writes per second and scale to $6,000 per month for 5M
writes per second meaning better cost efficiency with larger workloads. Absolute costs per
100M reads or writes provide longevity as costs per user or device do not escalate as your
business grows.

It must be reiterated that 1M writes per second costs only $2.10 per hour while 5M writes per
second costs only $8.40 per hour. Reads are even less expensive, with 5M reads per
second costing $1.26 per hour and over 50M reads per second costing $8.40 per hour.

Number of Servers $/hr $/100M Writes $/100M Reads

3 $1.26 $0.000390 $0.000057

5 $2.10 $0.000263 $0.000027

10 $4.20 $0.000122 $0.000009

20 $8.40 $0.000061 $0.000006

Conclusion
As expected, GridDB was easily able to achieve 1 million writes per second with four servers
and then scaled linearly to 5 million writes per second with 20 servers. Read performance
was also very good with over 6 million reads per second with 3 servers and over 60 million
reads per second with 20 servers.

These results show the cost effectiveness of GridDB, requiring significantly less
computational and storage resources than other databases.

The source code for the utility used to generate the workload in the above results is available
http://www.griddb.net/.

http://griddb.net/

