

CroMFlaG2
An Open Source Software Stack for Building IoT Solutions

March 27, 2020
Revision 1.00

Table Of Contents

Executive Summary 1

Introduction 1

IoT Architecture 2

Sending and Collecting Data 3
MQTT 3
HTTP/Flask 4

Storing Data 6
GridDB 6

Processing and Using Data 8
HTTP/Flask 8
Grafana 9
Cron 10

Conclusion 10

Executive Summary
This whitepaper showcases the hows and whys of a simple, flexible open source Internet of
Things (IoT) software stack: CroMFlaG2 (CROn, Mqtt, FLAsk, GridDB, Grafana). This stack
gives developers multiple options for ingesting, analyzing, and visualizing data required to
build useful IoT applications.

Introduction
With the popularity of the LAMP (Linux, Apache, MySQL, PHP/Perl/Python) stack that 1

powered the commoditization of the internet in the 2000s, many vendors have pushed their
products into neat, tightly coupled stacks of software that ease usage and deployment.

Some of these stacks have some adverse side effects: they promote vendor lock-in and
force the solution to fit the model that is intended by the stack making improvements,
changes, or new features difficult. CroMFlaG2 is intended to behave like the original LAMP
stack by being open source, extensively configurable and user modifiable.

1 https://en.wikipedia.org/wiki/LAMP_(software_bundle)

1

CroMFlaG2 has also been proven to be stable, lightweight and scalable to hundreds of
thousand devices and is easy to implement traditionally or with new practices such as
DevOps and Containerization; its components are well proven to work well with each other.
They consist of Cron, Mqtt, Flask, GridDB, and Grafana.

IoT Architecture
Most IoT solutions consist of edge devices that contain sensors or other data generators and
communicate with centralized infrastructure either directly or through a local gateway.

The centralized infrastructure can be hosted either on a public cloud or private on-premises
servers. The devices usually communicate with a separate data collector and not directly
with a database but there are certain instances where it is not required.

Once the data is stored in the primary data store, other processes can perform analysis or
visualize the stored data either in real time or in batches.

2

In CroMFlaG2, the MQTT Broker and Subscriber or HTTP Flask Application act as the data
collector while GridDB is the data store. HTTP Flask can also operate as an endpoint to
provide real time data to untrusted applications, for example, those developed or executed
by third parties outside of the data hosting organization. Meanwhile Grafana provides a
platform to visualize the data and Cron is used to generate reports, invoices, etc. on
predefined intervals.

Sending and Collecting Data

MQTT
MQTT is a lightweight publish/subscribe protocol that is intended for machine to machine
(M2M) communication. The key advantages of MQTT are its persistent connection, low
overhead (2 bytes) and its three QoS levels that ensure either that a message is sent, a
message is received, or a message is received at exactly once.

3

The MQTT broker is a service that runs on the data collector and passes data between the
MQTT publisher that is executed within the sensor or edge device and the MQTT Subscriber
that reads the publisher’s data and writes it into the data store. Popular brokers include
Mosquitto , HiveMQ , and RabbitMQ , any of which can be used within CroMFlaG2. 2 3 4

Data can be sent in any format but is usually binary blobs or more universal formats such as
MessagePack, JSON, or XML. MessagePack is a very lightweight, binary format that can be
easily serialized through data type conversion or custom packing. JSON and XML are both
used extensively within industry with excellent libraries available for generation and parsing.

HTTP/Flask
HTTP is the most commonly used network protocol, powering nearly all web traffic. HTTP
has more network overhead than MQTT and does not feature QoS features but has some
other advantages. First of all, HTTP is rarely blocked by network firewalls, it is simple to test
and well understood by many developers, features many libraries and frameworks to build
solutions with it, and is more reliable if wanting to transmit data from the centralized
infrastructure to the edge device.

On the edge or device side, libcurl or more abstracted libraries such as Microsoft's C++ 5

Rest SDK , can be used to send data. There are also a variety of ways to process incoming 6

data on the data collector, one of which is Flask, a lightweight web application framework.

The following sample code shows how curl can be used to simulate a device inserting a
record, simple scripts allow for easy DevOps deployment and Continuous Integration
practices.

2 https://mosquitto.org/
3 https://www.hivemq.com/
4 https://www.rabbitmq.com/
5 https://curl.haxx.se/libcurl/
6 https://github.com/microsoft/cpprestsdk

4

https://mosquitto.org/
https://www.hivemq.com/
https://www.rabbitmq.com/
https://curl.haxx.se/libcurl/
https://github.com/microsoft/cpprestsdk

$ curl -X POST --header "Content-Type: application/json" \
 http://localhost:8000/insert/sample --data '{
 "deviceinfo" : { "deviceid": "sample", "fw_ver" : "12345.009", "batt_lvl": 78 },

 "tsdata": [

 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 75.0,

 "illuminance": 74.0, "month": 2, "motion": false, "temperature": 78.0,

 "timestamp": 1582046738255 },

 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 66.0,
 "illuminance": 96.0, "month": 2, "motion": false, "temperature": 82.0,

 "timestamp": 1582046748255 },
 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 67.0,

 "illuminance": 93.0, "month": 2, "motion": false, "temperature": 81.0,

 "timestamp": 1582046758255 },

 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 77.0,

 "illuminance": 95.0, "month": 2, "motion": true , "temperature": 80.0,

 "timestamp": 1582046768255 },

 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 70.0,

 "illuminance": 90.0, "month": 2, "motion": false, "temperature": 79.0,

 "timestamp": 1582046778255 },

 { "day": 18, "dayofweek": 2, "hour": 17, "humidity": 66.0,

 "illuminance": 86.0, "month": 2, "motion": false, "temperature": 77.0,

 "timestamp": 1582046788255 }

]

}'

An example app built with the Flask framework that enables recording of data to GridDB 7

follows:

#!/usr/bin/python3 -u

from flask import Flask, request, abort
from flask_cors import CORS, cross_origin
from datetime import datetime
import griddb_python
import json

griddb = griddb_python

factory = griddb.StoreFactory.get_instance()

app = Flask(__name__)

cors = CORS(app)

@app.route('/insert/<device>', methods=['POST'])
def post(device):

 try:
 data = json.loads(request.data)

 if data['deviceinfo']['deviceid'] != device:
 abort(500, "malformed request")

7 https://palletsprojects.com/p/flask/

5

https://palletsprojects.com/p/flask/

 conInfo = griddb.ContainerInfo("devices",
 [["deviceid", griddb.Type.STRING],
 ["batt_lvl", griddb.Type.INTEGER],
 ["fw_ver", griddb.Type.STRING]],
 griddb.ContainerType.COLLECTION, True)

 devConInfo = griddb.ContainerInfo(device,

 [["timestamp", griddb.Type.TIMESTAMP],
 ["motion", griddb.Type.BOOL],
 ["temperature", griddb.Type.FLOAT],
 ["humidity", griddb.Type.FLOAT],
 ["illuminance", griddb.Type.FLOAT],
 ["month", griddb.Type.LONG],
 ["day", griddb.Type.LONG],
 ["dayofweek", griddb.Type.LONG],
 ["hour", griddb.Type.LONG]],
 griddb.ContainerType.TIME_SERIES, True)

 col = gridstore.put_container(conInfo)

 devCol = gridstore.put_container(devConInfo)

 col.set_auto_commit(False)
 devCol.set_auto_commit(False)

 col.put([data['deviceinfo']['deviceid'], data['deviceinfo']['batt_lvl'],
 data['deviceinfo']['fw_ver']])

 tsdata = []

 for row in data['tsdata']:
 tsdata.append([datetime.fromtimestamp(row['timestamp']/1000), row['motion'],
 row['temperature'], row['humidity'], row['illuminance'],
 row['month'], row['day'], row['dayofweek'], row['hour']])
 devCol.multi_put(tsdata)

 col.commit()

 devCol.commit()

 except:
 abort(500, "Insert failed")

 return "True"

if __name__ == "__main__":
 gridstore = factory.get_store(

 host="239.0.0.1",
 port=31999,
 cluster_name="defaultCluster",
 username="admin",
 password="admin"
)

 app.run(host='0.0.0.0', port=8000)

The device sends a HTTP POST request to the endpoint which parses the JSON and inserts
the data into multiple GridDB containers.

6

While not included in the above code, one big advantage of using a web framework such as
Flask is the ease of authenticating devices; you can include libraries such as OAuth2 that
provide a proven framework for authentication.

Storing Data

GridDB
GridDB is a highly scalable, in-memory NoSQL time series database optimized for IoT and
Big Data developed by Toshiba Digital Solutions Corporation.

The Key-Container data model of GridDB extends the typical NoSQL Key-Value store. The
Key-Container model represents data in the form of collections that are referenced by keys.
The key and container are rough equivalents of the table name and table data in Relational
Databases (RDB). Data modeling in GridDB is easier than with other NoSQL databases as
we can define the schema and design the data similar to that of an RDB.

GridDB’s hybrid composition of In-Memory and Disk architecture is designed for maximum
performance as I/O is a common bottleneck in any DBMS that can cause the CPU to be
under-utilized. GridDB overcomes this bottleneck with the ‘Memory first, Storage second’
structure where the ‘primary’ data that is frequently accessed resides in memory and the rest
is passed on to disks (SSD and HDD).

GridDB scales linearly and horizontally on commodity hardware maintaining excellent
performance as shown in YCSB benchmarks against Cassandra. Traditional RDBMS are 8

built on Scale-Up architecture (add more capacity to existing server/node). Transactions and
data consistency are excellent on RDBMS. On the other hand, NoSQL databases focus on
Scale-Out architecture but fare poorly on transactions and data consistency.

8 https://griddb.net/en/blog/griddb-and-cassandra-ycsb-benchmarks/

7

https://griddb.net/en/blog/griddb-and-cassandra-ycsb-benchmarks/

Hybrid cluster management and high fault-tolerant system of GridDB is exceptional for
mission-critical applications. Network partitions, node failures, and maintaining consistency
are some of the major problems that arise when data is distributed across nodes. Typically,
distributed systems adopt ‘Master-Slave’ or ‘Peer-to-Peer’ architectures. Master-Slave option
is good at maintaining data consistency but a master node redundancy is required to avoid
having a Single Point of Failure (SPOF). Peer-to-Peer, though avoids SPOF, has a huge
problem of communication overhead among the nodes.

Processing and Using Data

HTTP/Flask

Like using HTTP and Flask for ingesting data, HTTP and Flask are ideal for delivering data
to other applications, especially those used by third parties. The benefits of using HTTP and
Flask is the ease of development, the flexibility HTTP provides, and the number of different
libraries and frameworks available to build the application.

@app.route('/fetch/<device>', methods=['GET'])
def fetch(device):

8

 try:
 ts = gridstore.get_container(device)

 tql = "select *"
 first = True;

 if device != "devices":
 for arg in request.args:
 if first:
 tql = tql + " WHERE"
 else:
 tql = tql + " AND"
 if arg == "from":
 tql = tql + " timestamp >= TO_TIMESTAMP_MS("+request.args['from']+") "
 if arg == "to":
 tql = tql + " timestamp < TO_TIMESTAMP_MS("+request.args['to']+") "
 first = False
 query = ts.query(tql)

 rs = query.fetch(False)
 columns = rs.get_column_names()

 datadict = {}

 retval=[]

 while rs.has_next():
 data = rs.next()
 for col in columns:
 if col == "timestamp":
 datadict[col] = int(data[columns.index(col)].timestamp()*1000)
 else:
 datadict[col] = data[columns.index(col)]

 retval.append(datadict.copy())

 return json.dumps(retval)
 except:
 abort(500, "Fetch failed")

The above is a simple endpoint that allows querying of time series data optionally between
timestamps. Further features are easy to add as required with the numerous data analysis
tools available in python and useful additions to the Flask webframe like OAuth2
authentication to ensure data privacy or WebSockets to build real-time streaming
applications.

Grafana
Grafana is an open source analytics and interactive visualization platform that can read data 9

from many different databases including GridDB. There are two options for using Grafana
with GridDB, the first using a custom endpoint with Flask and then using JSON Datasource
or using the GridDB WebAPI and the native Grafana GridDB Datasource.

9 https://grafana.com/

9

https://grafana.com/

With Grafana, not only can you visualize real-time time series data in a variety of chart
formats, but it is also possible to add database driven annotations or display aggregations in
a table.

It is the ideal tool for operations teams to monitor their equipment with little upfront setup.

Cron
Cron is one of the oldest utilities used to manage software and should not be overlooked 10

for its simplicity and effectiveness. With Cron, the desired application that performs any task
can be run hourly, weekly, or monthly. In terms of the CroMFlaG2 stack, these applications
usually generate daily or weekly reports or monthly invoices based on data that has been
ingested.

Cron is not only included in most Linux distributions, but it is also possible to deploy
applications with Kubernetes container orchestration . 11

Conclusion
With CroMFlaG2 developers can build IoT solutions with open source components that
adapt to their infrastructure rather than adapting their infrastructure to the IoT software stack.
With MQTT and HTTP Flask, both high velocity data streams and recurring batched data can

10 https://en.wikipedia.org/wiki/Cron
11 https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

10

https://en.wikipedia.org/wiki/Cron
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

be ingested into the GridDB data store while HTTP Flask, Cron, and Grafana provide
different methods to furnish, process and visualize IoT data.

The HTTP Flask samples included in this whitepaper are available at
https://griddb.net/en/resources/ and as a Docker image at
https://hub.docker.com/r/griddbnet/cromflag2.

11

https://griddb.net/en/resources/
https://hub.docker.com/r/griddbnet/cromflag2

